Multiscale Analysis of 1-rectifiable Measures II: Characterizations
A measure is 1-rectifiable if there is a countable union of finite length curves whose complement has zero measure. We characterize 1-rectifiable Radon measures μ in n-dimensional Euclidean space for all n ≥ 2 in terms of positivity of the lower density and finiteness of a geometric square function,...
Guardado en:
Autores principales: | Badger Matthew, Schul Raanan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b8b65633af424a67aff0410686fe5c7b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
REGULAR CONDITIONAL PROBABILITY, DISINTEGRATION OF PROBABILITY AND RADON SPACES
por: LEAO Jr.,D., et al.
Publicado: (2004) -
A note on generalized topological spaces and preorder
por: Jafari,Saeid, et al.
Publicado: (2010) -
The 𝒫-Hausdorff, 𝒫-regular and 𝒫-normal ideal spaces
por: Pachón Rubiano,Néstor R.
Publicado: (2020) -
Angles between Curves in Metric Measure Spaces
por: Han Bang-Xian, et al.
Publicado: (2017) -
On global classical solutions to one-dimensional compressible Navier–Stokes/Allen–Cahn system with density-dependent viscosity and vacuum
por: Menglong Su
Publicado: (2021)