Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT
Abstract The Coronavirus disease 2019 (COVID-19) presents open questions in how we clinically diagnose and assess disease course. Recently, chest computed tomography (CT) has shown utility for COVID-19 diagnosis. In this study, we developed Deep COVID DeteCT (DCD), a deep learning convolutional neur...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b8cdd6ddc1174a5a86416c48a44db3cc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b8cdd6ddc1174a5a86416c48a44db3cc |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b8cdd6ddc1174a5a86416c48a44db3cc2021-12-02T14:18:07ZDeep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT10.1038/s41746-020-00369-12398-6352https://doaj.org/article/b8cdd6ddc1174a5a86416c48a44db3cc2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41746-020-00369-1https://doaj.org/toc/2398-6352Abstract The Coronavirus disease 2019 (COVID-19) presents open questions in how we clinically diagnose and assess disease course. Recently, chest computed tomography (CT) has shown utility for COVID-19 diagnosis. In this study, we developed Deep COVID DeteCT (DCD), a deep learning convolutional neural network (CNN) that uses the entire chest CT volume to automatically predict COVID-19 (COVID+) from non-COVID-19 (COVID−) pneumonia and normal controls. We discuss training strategies and differences in performance across 13 international institutions and 8 countries. The inclusion of non-China sites in training significantly improved classification performance with area under the curve (AUCs) and accuracies above 0.8 on most test sites. Furthermore, using available follow-up scans, we investigate methods to track patient disease course and predict prognosis.Edward H. LeeJimmy ZhengErrol ColakMaryam MohammadzadehGolnaz HoushmandNicholas BevinsFelipe KitamuraEmre AltinmakasEduardo Pontes ReisJae-Kwang KimChad KlochkoMichelle HanSadegh MoradianAli MohammadzadehHashem SharifianHassan HashemiKavous FirouzniaHossien GhanaatiMasoumeh GityHakan DoğanHojjat SalehinejadHenrique AlvesJayne SeekinsNitamar AbdalaÇetin AtasoyHamidreza PouraliakbarMajid MalekiS. Simon WongKristen W. YeomNature PortfolioarticleComputer applications to medicine. Medical informaticsR858-859.7ENnpj Digital Medicine, Vol 4, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Computer applications to medicine. Medical informatics R858-859.7 |
spellingShingle |
Computer applications to medicine. Medical informatics R858-859.7 Edward H. Lee Jimmy Zheng Errol Colak Maryam Mohammadzadeh Golnaz Houshmand Nicholas Bevins Felipe Kitamura Emre Altinmakas Eduardo Pontes Reis Jae-Kwang Kim Chad Klochko Michelle Han Sadegh Moradian Ali Mohammadzadeh Hashem Sharifian Hassan Hashemi Kavous Firouznia Hossien Ghanaati Masoumeh Gity Hakan Doğan Hojjat Salehinejad Henrique Alves Jayne Seekins Nitamar Abdala Çetin Atasoy Hamidreza Pouraliakbar Majid Maleki S. Simon Wong Kristen W. Yeom Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT |
description |
Abstract The Coronavirus disease 2019 (COVID-19) presents open questions in how we clinically diagnose and assess disease course. Recently, chest computed tomography (CT) has shown utility for COVID-19 diagnosis. In this study, we developed Deep COVID DeteCT (DCD), a deep learning convolutional neural network (CNN) that uses the entire chest CT volume to automatically predict COVID-19 (COVID+) from non-COVID-19 (COVID−) pneumonia and normal controls. We discuss training strategies and differences in performance across 13 international institutions and 8 countries. The inclusion of non-China sites in training significantly improved classification performance with area under the curve (AUCs) and accuracies above 0.8 on most test sites. Furthermore, using available follow-up scans, we investigate methods to track patient disease course and predict prognosis. |
format |
article |
author |
Edward H. Lee Jimmy Zheng Errol Colak Maryam Mohammadzadeh Golnaz Houshmand Nicholas Bevins Felipe Kitamura Emre Altinmakas Eduardo Pontes Reis Jae-Kwang Kim Chad Klochko Michelle Han Sadegh Moradian Ali Mohammadzadeh Hashem Sharifian Hassan Hashemi Kavous Firouznia Hossien Ghanaati Masoumeh Gity Hakan Doğan Hojjat Salehinejad Henrique Alves Jayne Seekins Nitamar Abdala Çetin Atasoy Hamidreza Pouraliakbar Majid Maleki S. Simon Wong Kristen W. Yeom |
author_facet |
Edward H. Lee Jimmy Zheng Errol Colak Maryam Mohammadzadeh Golnaz Houshmand Nicholas Bevins Felipe Kitamura Emre Altinmakas Eduardo Pontes Reis Jae-Kwang Kim Chad Klochko Michelle Han Sadegh Moradian Ali Mohammadzadeh Hashem Sharifian Hassan Hashemi Kavous Firouznia Hossien Ghanaati Masoumeh Gity Hakan Doğan Hojjat Salehinejad Henrique Alves Jayne Seekins Nitamar Abdala Çetin Atasoy Hamidreza Pouraliakbar Majid Maleki S. Simon Wong Kristen W. Yeom |
author_sort |
Edward H. Lee |
title |
Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT |
title_short |
Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT |
title_full |
Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT |
title_fullStr |
Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT |
title_full_unstemmed |
Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT |
title_sort |
deep covid detect: an international experience on covid-19 lung detection and prognosis using chest ct |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/b8cdd6ddc1174a5a86416c48a44db3cc |
work_keys_str_mv |
AT edwardhlee deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT jimmyzheng deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT errolcolak deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT maryammohammadzadeh deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT golnazhoushmand deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT nicholasbevins deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT felipekitamura deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT emrealtinmakas deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT eduardopontesreis deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT jaekwangkim deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT chadklochko deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT michellehan deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT sadeghmoradian deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT alimohammadzadeh deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT hashemsharifian deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT hassanhashemi deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT kavousfirouznia deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT hossienghanaati deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT masoumehgity deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT hakandogan deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT hojjatsalehinejad deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT henriquealves deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT jayneseekins deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT nitamarabdala deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT cetinatasoy deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT hamidrezapouraliakbar deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT majidmaleki deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT ssimonwong deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct AT kristenwyeom deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct |
_version_ |
1718391628837683200 |