Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT

Abstract The Coronavirus disease 2019 (COVID-19) presents open questions in how we clinically diagnose and assess disease course. Recently, chest computed tomography (CT) has shown utility for COVID-19 diagnosis. In this study, we developed Deep COVID DeteCT (DCD), a deep learning convolutional neur...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Edward H. Lee, Jimmy Zheng, Errol Colak, Maryam Mohammadzadeh, Golnaz Houshmand, Nicholas Bevins, Felipe Kitamura, Emre Altinmakas, Eduardo Pontes Reis, Jae-Kwang Kim, Chad Klochko, Michelle Han, Sadegh Moradian, Ali Mohammadzadeh, Hashem Sharifian, Hassan Hashemi, Kavous Firouznia, Hossien Ghanaati, Masoumeh Gity, Hakan Doğan, Hojjat Salehinejad, Henrique Alves, Jayne Seekins, Nitamar Abdala, Çetin Atasoy, Hamidreza Pouraliakbar, Majid Maleki, S. Simon Wong, Kristen W. Yeom
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/b8cdd6ddc1174a5a86416c48a44db3cc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b8cdd6ddc1174a5a86416c48a44db3cc
record_format dspace
spelling oai:doaj.org-article:b8cdd6ddc1174a5a86416c48a44db3cc2021-12-02T14:18:07ZDeep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT10.1038/s41746-020-00369-12398-6352https://doaj.org/article/b8cdd6ddc1174a5a86416c48a44db3cc2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41746-020-00369-1https://doaj.org/toc/2398-6352Abstract The Coronavirus disease 2019 (COVID-19) presents open questions in how we clinically diagnose and assess disease course. Recently, chest computed tomography (CT) has shown utility for COVID-19 diagnosis. In this study, we developed Deep COVID DeteCT (DCD), a deep learning convolutional neural network (CNN) that uses the entire chest CT volume to automatically predict COVID-19 (COVID+) from non-COVID-19 (COVID−) pneumonia and normal controls. We discuss training strategies and differences in performance across 13 international institutions and 8 countries. The inclusion of non-China sites in training significantly improved classification performance with area under the curve (AUCs) and accuracies above 0.8 on most test sites. Furthermore, using available follow-up scans, we investigate methods to track patient disease course and predict prognosis.Edward H. LeeJimmy ZhengErrol ColakMaryam MohammadzadehGolnaz HoushmandNicholas BevinsFelipe KitamuraEmre AltinmakasEduardo Pontes ReisJae-Kwang KimChad KlochkoMichelle HanSadegh MoradianAli MohammadzadehHashem SharifianHassan HashemiKavous FirouzniaHossien GhanaatiMasoumeh GityHakan DoğanHojjat SalehinejadHenrique AlvesJayne SeekinsNitamar AbdalaÇetin AtasoyHamidreza PouraliakbarMajid MalekiS. Simon WongKristen W. YeomNature PortfolioarticleComputer applications to medicine. Medical informaticsR858-859.7ENnpj Digital Medicine, Vol 4, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Computer applications to medicine. Medical informatics
R858-859.7
spellingShingle Computer applications to medicine. Medical informatics
R858-859.7
Edward H. Lee
Jimmy Zheng
Errol Colak
Maryam Mohammadzadeh
Golnaz Houshmand
Nicholas Bevins
Felipe Kitamura
Emre Altinmakas
Eduardo Pontes Reis
Jae-Kwang Kim
Chad Klochko
Michelle Han
Sadegh Moradian
Ali Mohammadzadeh
Hashem Sharifian
Hassan Hashemi
Kavous Firouznia
Hossien Ghanaati
Masoumeh Gity
Hakan Doğan
Hojjat Salehinejad
Henrique Alves
Jayne Seekins
Nitamar Abdala
Çetin Atasoy
Hamidreza Pouraliakbar
Majid Maleki
S. Simon Wong
Kristen W. Yeom
Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT
description Abstract The Coronavirus disease 2019 (COVID-19) presents open questions in how we clinically diagnose and assess disease course. Recently, chest computed tomography (CT) has shown utility for COVID-19 diagnosis. In this study, we developed Deep COVID DeteCT (DCD), a deep learning convolutional neural network (CNN) that uses the entire chest CT volume to automatically predict COVID-19 (COVID+) from non-COVID-19 (COVID−) pneumonia and normal controls. We discuss training strategies and differences in performance across 13 international institutions and 8 countries. The inclusion of non-China sites in training significantly improved classification performance with area under the curve (AUCs) and accuracies above 0.8 on most test sites. Furthermore, using available follow-up scans, we investigate methods to track patient disease course and predict prognosis.
format article
author Edward H. Lee
Jimmy Zheng
Errol Colak
Maryam Mohammadzadeh
Golnaz Houshmand
Nicholas Bevins
Felipe Kitamura
Emre Altinmakas
Eduardo Pontes Reis
Jae-Kwang Kim
Chad Klochko
Michelle Han
Sadegh Moradian
Ali Mohammadzadeh
Hashem Sharifian
Hassan Hashemi
Kavous Firouznia
Hossien Ghanaati
Masoumeh Gity
Hakan Doğan
Hojjat Salehinejad
Henrique Alves
Jayne Seekins
Nitamar Abdala
Çetin Atasoy
Hamidreza Pouraliakbar
Majid Maleki
S. Simon Wong
Kristen W. Yeom
author_facet Edward H. Lee
Jimmy Zheng
Errol Colak
Maryam Mohammadzadeh
Golnaz Houshmand
Nicholas Bevins
Felipe Kitamura
Emre Altinmakas
Eduardo Pontes Reis
Jae-Kwang Kim
Chad Klochko
Michelle Han
Sadegh Moradian
Ali Mohammadzadeh
Hashem Sharifian
Hassan Hashemi
Kavous Firouznia
Hossien Ghanaati
Masoumeh Gity
Hakan Doğan
Hojjat Salehinejad
Henrique Alves
Jayne Seekins
Nitamar Abdala
Çetin Atasoy
Hamidreza Pouraliakbar
Majid Maleki
S. Simon Wong
Kristen W. Yeom
author_sort Edward H. Lee
title Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT
title_short Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT
title_full Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT
title_fullStr Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT
title_full_unstemmed Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT
title_sort deep covid detect: an international experience on covid-19 lung detection and prognosis using chest ct
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/b8cdd6ddc1174a5a86416c48a44db3cc
work_keys_str_mv AT edwardhlee deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT jimmyzheng deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT errolcolak deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT maryammohammadzadeh deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT golnazhoushmand deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT nicholasbevins deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT felipekitamura deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT emrealtinmakas deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT eduardopontesreis deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT jaekwangkim deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT chadklochko deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT michellehan deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT sadeghmoradian deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT alimohammadzadeh deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT hashemsharifian deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT hassanhashemi deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT kavousfirouznia deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT hossienghanaati deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT masoumehgity deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT hakandogan deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT hojjatsalehinejad deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT henriquealves deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT jayneseekins deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT nitamarabdala deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT cetinatasoy deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT hamidrezapouraliakbar deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT majidmaleki deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT ssimonwong deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
AT kristenwyeom deepcoviddetectaninternationalexperienceoncovid19lungdetectionandprognosisusingchestct
_version_ 1718391628837683200