A decomposition‐based multi‐time dimension long short‐term memory model for short‐term electric load forecasting
Abstract Short‐term load forecasting is essential to power systems management. However, most existing forecasting methods fail to fully consider how to rationally integrate the intrinsic time‐related dimensions of electric load data and the decomposition methods into machine learning models so that...
Enregistré dans:
Auteurs principaux: | Jiehui Huang, Zhiwang Zhou, Chunquan Li, Zhiyuan Liao, Peter X. Liu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Wiley
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b8ce4b4f36884e16bd712b294d9c7139 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Long‐term generation scheduling for renewable‐dominant systems concerning limited energy supporting capability of hydrogeneration
par: Yisha Lin, et autres
Publié: (2022) -
Measurement and monitoring of overhead transmission line sag in smart grid: A review
par: Ayman Uddin Mahin, et autres
Publié: (2022) -
A machine learning approach for real‐time selection of preventive actions improving power network resilience
par: Matthias Noebels, et autres
Publié: (2022) -
A privacy‐preserving approach to day‐ahead TSO‐DSO coordinated stochastic scheduling for energy and reserve
par: Mahdi Habibi, et autres
Publié: (2022) -
Reliability‐constrained robust expansion planning of active distribution networks
par: Rafael S. Pinto, et autres
Publié: (2022)