A decomposition‐based multi‐time dimension long short‐term memory model for short‐term electric load forecasting
Abstract Short‐term load forecasting is essential to power systems management. However, most existing forecasting methods fail to fully consider how to rationally integrate the intrinsic time‐related dimensions of electric load data and the decomposition methods into machine learning models so that...
Guardado en:
Autores principales: | Jiehui Huang, Zhiwang Zhou, Chunquan Li, Zhiyuan Liao, Peter X. Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b8ce4b4f36884e16bd712b294d9c7139 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Long‐term generation scheduling for renewable‐dominant systems concerning limited energy supporting capability of hydrogeneration
por: Yisha Lin, et al.
Publicado: (2022) -
Measurement and monitoring of overhead transmission line sag in smart grid: A review
por: Ayman Uddin Mahin, et al.
Publicado: (2022) -
A machine learning approach for real‐time selection of preventive actions improving power network resilience
por: Matthias Noebels, et al.
Publicado: (2022) -
A privacy‐preserving approach to day‐ahead TSO‐DSO coordinated stochastic scheduling for energy and reserve
por: Mahdi Habibi, et al.
Publicado: (2022) -
Reliability‐constrained robust expansion planning of active distribution networks
por: Rafael S. Pinto, et al.
Publicado: (2022)