A cryo-TSEM with temperature cycling capability allows deep sublimation of ice to uncover fine structures in thick cells

Abstract The scanning electron microscope (SEM) has been reassembled into a new type of cryo-electron microscope (cryo-TSEM) by installing a new cryo-transfer holder and anti-contamination trap, which allowed simultaneous acquisition of both transmission images (STEM images) and surface images (SEM...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jiro Usukura, Akihiro Narita, Tomoharu Matsumoto, Eiji Usukura, Takeshi Sunaoshi, Syunya Watanabe, Yusuke Tamba, Yasuhira Nagakubo, Takashi Mizuo, Junzo Azuma, Masako Osumi, Kazutaka Nimura, Ryuichiro Tamochi, Yoichi Ose
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b8e0ce76230b4113a0fa5d7ebebda2c7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b8e0ce76230b4113a0fa5d7ebebda2c7
record_format dspace
spelling oai:doaj.org-article:b8e0ce76230b4113a0fa5d7ebebda2c72021-11-08T10:49:00ZA cryo-TSEM with temperature cycling capability allows deep sublimation of ice to uncover fine structures in thick cells10.1038/s41598-021-00979-z2045-2322https://doaj.org/article/b8e0ce76230b4113a0fa5d7ebebda2c72021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-00979-zhttps://doaj.org/toc/2045-2322Abstract The scanning electron microscope (SEM) has been reassembled into a new type of cryo-electron microscope (cryo-TSEM) by installing a new cryo-transfer holder and anti-contamination trap, which allowed simultaneous acquisition of both transmission images (STEM images) and surface images (SEM images) in the frozen state. The ultimate temperatures of the holder and the trap reached − 190 °C and − 210 °C, respectively, by applying a liquid nitrogen slush. The STEM images at 30 kV were comparable to, or superior to, the images acquired with conventional transmission electron microscope (100 kV TEM) in contrast and sharpness. The unroofing method was used to observe membrane cytoskeletons instead of the frozen section and the FIB methods. Deep sublimation of ice surrounding unroofed cells by regulating temperature enabled to emerge intracellular fine structures in thick frozen cells. Hence, fine structures in the vicinity of the cell membrane such as the cytoskeleton, polyribosome chains and endoplasmic reticulum (ER) became visible. The ER was distributed as a wide, flat structure beneath the cell membrane, forming a large spatial network with tubular ER.Jiro UsukuraAkihiro NaritaTomoharu MatsumotoEiji UsukuraTakeshi SunaoshiSyunya WatanabeYusuke TambaYasuhira NagakuboTakashi MizuoJunzo AzumaMasako OsumiKazutaka NimuraRyuichiro TamochiYoichi OseNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Jiro Usukura
Akihiro Narita
Tomoharu Matsumoto
Eiji Usukura
Takeshi Sunaoshi
Syunya Watanabe
Yusuke Tamba
Yasuhira Nagakubo
Takashi Mizuo
Junzo Azuma
Masako Osumi
Kazutaka Nimura
Ryuichiro Tamochi
Yoichi Ose
A cryo-TSEM with temperature cycling capability allows deep sublimation of ice to uncover fine structures in thick cells
description Abstract The scanning electron microscope (SEM) has been reassembled into a new type of cryo-electron microscope (cryo-TSEM) by installing a new cryo-transfer holder and anti-contamination trap, which allowed simultaneous acquisition of both transmission images (STEM images) and surface images (SEM images) in the frozen state. The ultimate temperatures of the holder and the trap reached − 190 °C and − 210 °C, respectively, by applying a liquid nitrogen slush. The STEM images at 30 kV were comparable to, or superior to, the images acquired with conventional transmission electron microscope (100 kV TEM) in contrast and sharpness. The unroofing method was used to observe membrane cytoskeletons instead of the frozen section and the FIB methods. Deep sublimation of ice surrounding unroofed cells by regulating temperature enabled to emerge intracellular fine structures in thick frozen cells. Hence, fine structures in the vicinity of the cell membrane such as the cytoskeleton, polyribosome chains and endoplasmic reticulum (ER) became visible. The ER was distributed as a wide, flat structure beneath the cell membrane, forming a large spatial network with tubular ER.
format article
author Jiro Usukura
Akihiro Narita
Tomoharu Matsumoto
Eiji Usukura
Takeshi Sunaoshi
Syunya Watanabe
Yusuke Tamba
Yasuhira Nagakubo
Takashi Mizuo
Junzo Azuma
Masako Osumi
Kazutaka Nimura
Ryuichiro Tamochi
Yoichi Ose
author_facet Jiro Usukura
Akihiro Narita
Tomoharu Matsumoto
Eiji Usukura
Takeshi Sunaoshi
Syunya Watanabe
Yusuke Tamba
Yasuhira Nagakubo
Takashi Mizuo
Junzo Azuma
Masako Osumi
Kazutaka Nimura
Ryuichiro Tamochi
Yoichi Ose
author_sort Jiro Usukura
title A cryo-TSEM with temperature cycling capability allows deep sublimation of ice to uncover fine structures in thick cells
title_short A cryo-TSEM with temperature cycling capability allows deep sublimation of ice to uncover fine structures in thick cells
title_full A cryo-TSEM with temperature cycling capability allows deep sublimation of ice to uncover fine structures in thick cells
title_fullStr A cryo-TSEM with temperature cycling capability allows deep sublimation of ice to uncover fine structures in thick cells
title_full_unstemmed A cryo-TSEM with temperature cycling capability allows deep sublimation of ice to uncover fine structures in thick cells
title_sort cryo-tsem with temperature cycling capability allows deep sublimation of ice to uncover fine structures in thick cells
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/b8e0ce76230b4113a0fa5d7ebebda2c7
work_keys_str_mv AT jirousukura acryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT akihironarita acryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT tomoharumatsumoto acryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT eijiusukura acryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT takeshisunaoshi acryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT syunyawatanabe acryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT yusuketamba acryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT yasuhiranagakubo acryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT takashimizuo acryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT junzoazuma acryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT masakoosumi acryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT kazutakanimura acryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT ryuichirotamochi acryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT yoichiose acryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT jirousukura cryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT akihironarita cryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT tomoharumatsumoto cryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT eijiusukura cryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT takeshisunaoshi cryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT syunyawatanabe cryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT yusuketamba cryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT yasuhiranagakubo cryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT takashimizuo cryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT junzoazuma cryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT masakoosumi cryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT kazutakanimura cryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT ryuichirotamochi cryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
AT yoichiose cryotsemwithtemperaturecyclingcapabilityallowsdeepsublimationoficetouncoverfinestructuresinthickcells
_version_ 1718442656188596224