A clinical transcriptome approach to patient stratification and therapy selection in acute myeloid leukemia

Several genomic features have been found for acute myeloid leukaemia (AML) but targeted clinical genetic testing fails to predict prognosis. Here, the authors generate an AML prognostic score from RNA-seq data of patients, which successfully stratifies AML patients and which may provide guidance for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: T. Roderick Docking, Jeremy D. K. Parker, Martin Jädersten, Gerben Duns, Linda Chang, Jihong Jiang, Jessica A. Pilsworth, Lucas A. Swanson, Simon K. Chan, Readman Chiu, Ka Ming Nip, Samantha Mar, Angela Mo, Xuan Wang, Sergio Martinez-Høyer, Ryan J. Stubbins, Karen L. Mungall, Andrew J. Mungall, Richard A. Moore, Steven J. M. Jones, İnanç Birol, Marco A. Marra, Donna Hogge, Aly Karsan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/b8f2ebaeb4ca47dbbfddf2abb90ffb18
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Several genomic features have been found for acute myeloid leukaemia (AML) but targeted clinical genetic testing fails to predict prognosis. Here, the authors generate an AML prognostic score from RNA-seq data of patients, which successfully stratifies AML patients and which may provide guidance for therapeutic strategies.