A clinical transcriptome approach to patient stratification and therapy selection in acute myeloid leukemia

Several genomic features have been found for acute myeloid leukaemia (AML) but targeted clinical genetic testing fails to predict prognosis. Here, the authors generate an AML prognostic score from RNA-seq data of patients, which successfully stratifies AML patients and which may provide guidance for...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: T. Roderick Docking, Jeremy D. K. Parker, Martin Jädersten, Gerben Duns, Linda Chang, Jihong Jiang, Jessica A. Pilsworth, Lucas A. Swanson, Simon K. Chan, Readman Chiu, Ka Ming Nip, Samantha Mar, Angela Mo, Xuan Wang, Sergio Martinez-Høyer, Ryan J. Stubbins, Karen L. Mungall, Andrew J. Mungall, Richard A. Moore, Steven J. M. Jones, İnanç Birol, Marco A. Marra, Donna Hogge, Aly Karsan
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/b8f2ebaeb4ca47dbbfddf2abb90ffb18
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Several genomic features have been found for acute myeloid leukaemia (AML) but targeted clinical genetic testing fails to predict prognosis. Here, the authors generate an AML prognostic score from RNA-seq data of patients, which successfully stratifies AML patients and which may provide guidance for therapeutic strategies.