Pressure induced superconductivity bordering a charge-density-wave state in NbTe4 with strong spin-orbit coupling
Abstract Transition-metal chalcogenides host various phases of matter, such as charge-density wave (CDW), superconductors, and topological insulators or semimetals. Superconductivity and its competition with CDW in low-dimensional compounds have attracted much interest and stimulated considerable re...
Enregistré dans:
Auteurs principaux: | , , , , , , , , , , , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b8f9dbd6e6d74cb6a9cefec6f6bd201b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | Abstract Transition-metal chalcogenides host various phases of matter, such as charge-density wave (CDW), superconductors, and topological insulators or semimetals. Superconductivity and its competition with CDW in low-dimensional compounds have attracted much interest and stimulated considerable research. Here we report pressure induced superconductivity in a strong spin-orbit (SO) coupled quasi-one-dimensional (1D) transition-metal chalcogenide NbTe4, which is a CDW material under ambient pressure. With increasing pressure, the CDW transition temperature is gradually suppressed, and superconducting transition, which is fingerprinted by a steep resistivity drop, emerges at pressures above 12.4 GPa. Under pressure p = 69 GPa, zero resistance is detected with a transition temperature T c = 2.2 K and an upper critical field μ 0 H c2 = 2 T. We also find large magnetoresistance (MR) up to 102% at low temperatures, which is a distinct feature differentiating NbTe4 from other conventional CDW materials. |
---|