Outliers detection and treatment: a review.
Outliers are observations or measures that are suspicious because they are much smaller or much larger than the vast majority of the observations. These observations are problematic because they may not be caused by the mental process under scrutiny or may not reflect the ability under examination....
Guardado en:
Autores principales: | Denis Cousineau, Sylvain Chartier |
---|---|
Formato: | article |
Lenguaje: | EN ES |
Publicado: |
Universidad de San Buenaventura
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b90136089b3b4d9ab7d150bffa06e942 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Robust analysis of the central tendency, simple and multiple regression and ANOVA: a step by step tutorial.
por: Delphine S. Courvoisier, et al.
Publicado: (2010) -
FraudMove: Fraud Drivers Discovery Using Real-Time Trajectory Outlier Detection
por: Eman O. Eldawy, et al.
Publicado: (2021) -
Algorithm optimization and anomaly detection simulation based on extended Jarvis-Patrick clustering and outlier detection
por: Wei Wang, et al.
Publicado: (2022) -
Improving outliers detection in data streams using LiCS and voting
por: Fatima-Zahra Benjelloun, et al.
Publicado: (2021) -
Detection of Outliers in LiDAR Data Acquired by Multiple Platforms over Sorghum and Maize
por: Behrokh Nazeri, et al.
Publicado: (2021)