Evaluating Metagenomic Prediction of the Metaproteome in a 4.5-Year Study of a Patient with Crohn's Disease

ABSTRACT Although genetic approaches are the standard in microbiome analysis, proteome-level information is largely absent. This discrepancy warrants a better understanding of the relationship between gene copy number and protein abundance, as this is crucial information for inferring protein-level...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Robert H. Mills, Yoshiki Vázquez-Baeza, Qiyun Zhu, Lingjing Jiang, James Gaffney, Greg Humphrey, Larry Smarr, Rob Knight, David J. Gonzalez
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://doaj.org/article/b907b7cb9f5d4918b7ae946feea99386
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b907b7cb9f5d4918b7ae946feea99386
record_format dspace
spelling oai:doaj.org-article:b907b7cb9f5d4918b7ae946feea993862021-12-02T18:39:15ZEvaluating Metagenomic Prediction of the Metaproteome in a 4.5-Year Study of a Patient with Crohn's Disease10.1128/mSystems.00337-182379-5077https://doaj.org/article/b907b7cb9f5d4918b7ae946feea993862019-02-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSystems.00337-18https://doaj.org/toc/2379-5077ABSTRACT Although genetic approaches are the standard in microbiome analysis, proteome-level information is largely absent. This discrepancy warrants a better understanding of the relationship between gene copy number and protein abundance, as this is crucial information for inferring protein-level changes from metagenomic data. As it remains unknown how metaproteomic systems evolve during dynamic disease states, we leveraged a 4.5-year fecal time series using samples from a single patient with colonic Crohn’s disease. Utilizing multiplexed quantitative proteomics and shotgun metagenomic sequencing of eight time points in technical triplicate, we quantified over 29,000 protein groups and 110,000 genes and compared them to five protein biomarkers of disease activity. Broad-scale observations were consistent between data types, including overall clustering by principal-coordinate analysis and fluctuations in Gene Ontology terms related to Crohn’s disease. Through linear regression, we determined genes and proteins fluctuating in conjunction with inflammatory metrics. We discovered conserved taxonomic differences relevant to Crohn’s disease, including a negative association of Faecalibacterium and a positive association of Escherichia with calprotectin. Despite concordant associations of genera, the specific genes correlated with these metrics were drastically different between metagenomic and metaproteomic data sets. This resulted in the generation of unique functional interpretations dependent on the data type, with metaproteome evidence for previously investigated mechanisms of dysbiosis. An example of one such mechanism was a connection between urease enzymes, amino acid metabolism, and the local inflammation state within the patient. This proof-of-concept approach prompts further investigation of the metaproteome and its relationship with the metagenome in biologically complex systems such as the microbiome. IMPORTANCE A majority of current microbiome research relies heavily on DNA analysis. However, as the field moves toward understanding the microbial functions related to healthy and disease states, it is critical to evaluate how changes in DNA relate to changes in proteins, which are functional units of the genome. This study tracked the abundance of genes and proteins as they fluctuated during various inflammatory states in a 4.5-year study of a patient with colonic Crohn’s disease. Our results indicate that despite a low level of correlation, taxonomic associations were consistent in the two data types. While there was overlap of the data types, several associations were uniquely discovered by analyzing the metaproteome component. This case study provides unique and important insights into the fundamental relationship between the genes and proteins of a single individual’s fecal microbiome associated with clinical consequences.Robert H. MillsYoshiki Vázquez-BaezaQiyun ZhuLingjing JiangJames GaffneyGreg HumphreyLarry SmarrRob KnightDavid J. GonzalezAmerican Society for Microbiologyarticlecolonic Crohn's diseaseinflammatory bowel diseasemetagenomicsmetaproteomicsmicrobiomemultiomicsMicrobiologyQR1-502ENmSystems, Vol 4, Iss 1 (2019)
institution DOAJ
collection DOAJ
language EN
topic colonic Crohn's disease
inflammatory bowel disease
metagenomics
metaproteomics
microbiome
multiomics
Microbiology
QR1-502
spellingShingle colonic Crohn's disease
inflammatory bowel disease
metagenomics
metaproteomics
microbiome
multiomics
Microbiology
QR1-502
Robert H. Mills
Yoshiki Vázquez-Baeza
Qiyun Zhu
Lingjing Jiang
James Gaffney
Greg Humphrey
Larry Smarr
Rob Knight
David J. Gonzalez
Evaluating Metagenomic Prediction of the Metaproteome in a 4.5-Year Study of a Patient with Crohn's Disease
description ABSTRACT Although genetic approaches are the standard in microbiome analysis, proteome-level information is largely absent. This discrepancy warrants a better understanding of the relationship between gene copy number and protein abundance, as this is crucial information for inferring protein-level changes from metagenomic data. As it remains unknown how metaproteomic systems evolve during dynamic disease states, we leveraged a 4.5-year fecal time series using samples from a single patient with colonic Crohn’s disease. Utilizing multiplexed quantitative proteomics and shotgun metagenomic sequencing of eight time points in technical triplicate, we quantified over 29,000 protein groups and 110,000 genes and compared them to five protein biomarkers of disease activity. Broad-scale observations were consistent between data types, including overall clustering by principal-coordinate analysis and fluctuations in Gene Ontology terms related to Crohn’s disease. Through linear regression, we determined genes and proteins fluctuating in conjunction with inflammatory metrics. We discovered conserved taxonomic differences relevant to Crohn’s disease, including a negative association of Faecalibacterium and a positive association of Escherichia with calprotectin. Despite concordant associations of genera, the specific genes correlated with these metrics were drastically different between metagenomic and metaproteomic data sets. This resulted in the generation of unique functional interpretations dependent on the data type, with metaproteome evidence for previously investigated mechanisms of dysbiosis. An example of one such mechanism was a connection between urease enzymes, amino acid metabolism, and the local inflammation state within the patient. This proof-of-concept approach prompts further investigation of the metaproteome and its relationship with the metagenome in biologically complex systems such as the microbiome. IMPORTANCE A majority of current microbiome research relies heavily on DNA analysis. However, as the field moves toward understanding the microbial functions related to healthy and disease states, it is critical to evaluate how changes in DNA relate to changes in proteins, which are functional units of the genome. This study tracked the abundance of genes and proteins as they fluctuated during various inflammatory states in a 4.5-year study of a patient with colonic Crohn’s disease. Our results indicate that despite a low level of correlation, taxonomic associations were consistent in the two data types. While there was overlap of the data types, several associations were uniquely discovered by analyzing the metaproteome component. This case study provides unique and important insights into the fundamental relationship between the genes and proteins of a single individual’s fecal microbiome associated with clinical consequences.
format article
author Robert H. Mills
Yoshiki Vázquez-Baeza
Qiyun Zhu
Lingjing Jiang
James Gaffney
Greg Humphrey
Larry Smarr
Rob Knight
David J. Gonzalez
author_facet Robert H. Mills
Yoshiki Vázquez-Baeza
Qiyun Zhu
Lingjing Jiang
James Gaffney
Greg Humphrey
Larry Smarr
Rob Knight
David J. Gonzalez
author_sort Robert H. Mills
title Evaluating Metagenomic Prediction of the Metaproteome in a 4.5-Year Study of a Patient with Crohn's Disease
title_short Evaluating Metagenomic Prediction of the Metaproteome in a 4.5-Year Study of a Patient with Crohn's Disease
title_full Evaluating Metagenomic Prediction of the Metaproteome in a 4.5-Year Study of a Patient with Crohn's Disease
title_fullStr Evaluating Metagenomic Prediction of the Metaproteome in a 4.5-Year Study of a Patient with Crohn's Disease
title_full_unstemmed Evaluating Metagenomic Prediction of the Metaproteome in a 4.5-Year Study of a Patient with Crohn's Disease
title_sort evaluating metagenomic prediction of the metaproteome in a 4.5-year study of a patient with crohn's disease
publisher American Society for Microbiology
publishDate 2019
url https://doaj.org/article/b907b7cb9f5d4918b7ae946feea99386
work_keys_str_mv AT roberthmills evaluatingmetagenomicpredictionofthemetaproteomeina45yearstudyofapatientwithcrohnsdisease
AT yoshikivazquezbaeza evaluatingmetagenomicpredictionofthemetaproteomeina45yearstudyofapatientwithcrohnsdisease
AT qiyunzhu evaluatingmetagenomicpredictionofthemetaproteomeina45yearstudyofapatientwithcrohnsdisease
AT lingjingjiang evaluatingmetagenomicpredictionofthemetaproteomeina45yearstudyofapatientwithcrohnsdisease
AT jamesgaffney evaluatingmetagenomicpredictionofthemetaproteomeina45yearstudyofapatientwithcrohnsdisease
AT greghumphrey evaluatingmetagenomicpredictionofthemetaproteomeina45yearstudyofapatientwithcrohnsdisease
AT larrysmarr evaluatingmetagenomicpredictionofthemetaproteomeina45yearstudyofapatientwithcrohnsdisease
AT robknight evaluatingmetagenomicpredictionofthemetaproteomeina45yearstudyofapatientwithcrohnsdisease
AT davidjgonzalez evaluatingmetagenomicpredictionofthemetaproteomeina45yearstudyofapatientwithcrohnsdisease
_version_ 1718377762800009216