Towards stable and high‐capacity anode materials for sodium‐ion batteries by embedding of Sb/Sn nanoparticles into electrospun mesoporous carbon fibers

Abstract Antimony and tin are promising anode materials for sodium‐ion batteries due to their high theoretical sodium storage capacities. However, significant volume change during cycling limits their long‐term stability and rate performance. Composite engineering can minimize this problem. A versat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tian Liu, Runyu Yan, Elinor Josef, Haijian Huang, Long Pan, Markus Niederberger, Martin Oschatz
Formato: article
Lenguaje:EN
Publicado: Wiley-VCH 2021
Materias:
Acceso en línea:https://doaj.org/article/b91162852e1a4c7aaf018b87f874a235
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b91162852e1a4c7aaf018b87f874a235
record_format dspace
spelling oai:doaj.org-article:b91162852e1a4c7aaf018b87f874a2352021-11-23T18:05:26ZTowards stable and high‐capacity anode materials for sodium‐ion batteries by embedding of Sb/Sn nanoparticles into electrospun mesoporous carbon fibers2698-597710.1002/elsa.202100010https://doaj.org/article/b91162852e1a4c7aaf018b87f874a2352021-11-01T00:00:00Zhttps://doi.org/10.1002/elsa.202100010https://doaj.org/toc/2698-5977Abstract Antimony and tin are promising anode materials for sodium‐ion batteries due to their high theoretical sodium storage capacities. However, significant volume change during cycling limits their long‐term stability and rate performance. Composite engineering can minimize this problem. A versatile method for the synthesis of Sb nanoparticles inside the mesopores of carbon fibers prepared through electrospinning and subsequent carbothermal reduction is presented in this work. The mesopore architecture can host up to 61 wt% of Sb nanoparticles and buffer the volume changes during cycling. Smaller pores in the carbon provide the pathways for reversible insertion/extraction of sodium. This binder‐free material provides high rate capability and a long‐term cycling performance when used as an anode in half‐cells. When cycled at 0.5 A g−1, the composite shows an initial capacity of 520 mA h g−1 with 507 mA h g−1 remaining after 500 cycles. Even at a high current density of 20 A g−1, a capacity of 197 mA h g−1 is still achieved. Sn nanoparticles can be embedded in the mesopores of the carbon fibers by a similar method. These Sn‐based anodes also show remarkable electrochemical performance, indicating that this approach represents a generally applicable strategy for synthesizing advanced battery anodes.Tian LiuRunyu YanElinor JosefHaijian HuangLong PanMarkus NiederbergerMartin OschatzWiley-VCHarticleanodeselectrospinningmesoporous carbon fibersmetal nanoparticlessodium‐ion batteriesIndustrial electrochemistryTP250-261ChemistryQD1-999ENElectrochemical Science Advances, Vol 1, Iss 4, Pp n/a-n/a (2021)
institution DOAJ
collection DOAJ
language EN
topic anodes
electrospinning
mesoporous carbon fibers
metal nanoparticles
sodium‐ion batteries
Industrial electrochemistry
TP250-261
Chemistry
QD1-999
spellingShingle anodes
electrospinning
mesoporous carbon fibers
metal nanoparticles
sodium‐ion batteries
Industrial electrochemistry
TP250-261
Chemistry
QD1-999
Tian Liu
Runyu Yan
Elinor Josef
Haijian Huang
Long Pan
Markus Niederberger
Martin Oschatz
Towards stable and high‐capacity anode materials for sodium‐ion batteries by embedding of Sb/Sn nanoparticles into electrospun mesoporous carbon fibers
description Abstract Antimony and tin are promising anode materials for sodium‐ion batteries due to their high theoretical sodium storage capacities. However, significant volume change during cycling limits their long‐term stability and rate performance. Composite engineering can minimize this problem. A versatile method for the synthesis of Sb nanoparticles inside the mesopores of carbon fibers prepared through electrospinning and subsequent carbothermal reduction is presented in this work. The mesopore architecture can host up to 61 wt% of Sb nanoparticles and buffer the volume changes during cycling. Smaller pores in the carbon provide the pathways for reversible insertion/extraction of sodium. This binder‐free material provides high rate capability and a long‐term cycling performance when used as an anode in half‐cells. When cycled at 0.5 A g−1, the composite shows an initial capacity of 520 mA h g−1 with 507 mA h g−1 remaining after 500 cycles. Even at a high current density of 20 A g−1, a capacity of 197 mA h g−1 is still achieved. Sn nanoparticles can be embedded in the mesopores of the carbon fibers by a similar method. These Sn‐based anodes also show remarkable electrochemical performance, indicating that this approach represents a generally applicable strategy for synthesizing advanced battery anodes.
format article
author Tian Liu
Runyu Yan
Elinor Josef
Haijian Huang
Long Pan
Markus Niederberger
Martin Oschatz
author_facet Tian Liu
Runyu Yan
Elinor Josef
Haijian Huang
Long Pan
Markus Niederberger
Martin Oschatz
author_sort Tian Liu
title Towards stable and high‐capacity anode materials for sodium‐ion batteries by embedding of Sb/Sn nanoparticles into electrospun mesoporous carbon fibers
title_short Towards stable and high‐capacity anode materials for sodium‐ion batteries by embedding of Sb/Sn nanoparticles into electrospun mesoporous carbon fibers
title_full Towards stable and high‐capacity anode materials for sodium‐ion batteries by embedding of Sb/Sn nanoparticles into electrospun mesoporous carbon fibers
title_fullStr Towards stable and high‐capacity anode materials for sodium‐ion batteries by embedding of Sb/Sn nanoparticles into electrospun mesoporous carbon fibers
title_full_unstemmed Towards stable and high‐capacity anode materials for sodium‐ion batteries by embedding of Sb/Sn nanoparticles into electrospun mesoporous carbon fibers
title_sort towards stable and high‐capacity anode materials for sodium‐ion batteries by embedding of sb/sn nanoparticles into electrospun mesoporous carbon fibers
publisher Wiley-VCH
publishDate 2021
url https://doaj.org/article/b91162852e1a4c7aaf018b87f874a235
work_keys_str_mv AT tianliu towardsstableandhighcapacityanodematerialsforsodiumionbatteriesbyembeddingofsbsnnanoparticlesintoelectrospunmesoporouscarbonfibers
AT runyuyan towardsstableandhighcapacityanodematerialsforsodiumionbatteriesbyembeddingofsbsnnanoparticlesintoelectrospunmesoporouscarbonfibers
AT elinorjosef towardsstableandhighcapacityanodematerialsforsodiumionbatteriesbyembeddingofsbsnnanoparticlesintoelectrospunmesoporouscarbonfibers
AT haijianhuang towardsstableandhighcapacityanodematerialsforsodiumionbatteriesbyembeddingofsbsnnanoparticlesintoelectrospunmesoporouscarbonfibers
AT longpan towardsstableandhighcapacityanodematerialsforsodiumionbatteriesbyembeddingofsbsnnanoparticlesintoelectrospunmesoporouscarbonfibers
AT markusniederberger towardsstableandhighcapacityanodematerialsforsodiumionbatteriesbyembeddingofsbsnnanoparticlesintoelectrospunmesoporouscarbonfibers
AT martinoschatz towardsstableandhighcapacityanodematerialsforsodiumionbatteriesbyembeddingofsbsnnanoparticlesintoelectrospunmesoporouscarbonfibers
_version_ 1718416177384914944