On the Vacuum Structure of the <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> Conformal Supergravity

We consider <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math><...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ioannis Dalianis, Alex Kehagias, Ioannis Taskas, George Tringas
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/b9196fa6a62747739d23a6e66620fbd1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We consider <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> conformal supergravity with an arbitrary holomorphic function of the complex scalar <i>S</i> which parametrizes the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>U</mi><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>U</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> coset. Assuming non-vanishings vevs for <i>S</i> and the scalars in a symmetric matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></semantics></math></inline-formula> of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mn mathvariant="bold">10</mn><mo>¯</mo></mover></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>U</mi><mo>(</mo><mn>4</mn><mo>)</mo></mrow></semantics></math></inline-formula> R-symmetry group, we determine the vacuum structure of the theory. We find that the possible vacua are classified by the number of zero eigenvalues of the scalar matrix and the spacetime is either Minkowski, de Sitter, or anti-de Sitter. We determine the spectrum of the scalar fluctuations and we find that it contains tachyonic states which, however, can be removed by appropriate choice of the unspecified at the supergravity level holomorphic function. Finally, we also establish that <i>S</i>-supersymmetry is always broken whereas <i>Q</i>-supersymmetry exists only on flat Minkowski spacetime.