On the Vacuum Structure of the <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> Conformal Supergravity

We consider <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math><...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ioannis Dalianis, Alex Kehagias, Ioannis Taskas, George Tringas
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/b9196fa6a62747739d23a6e66620fbd1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b9196fa6a62747739d23a6e66620fbd1
record_format dspace
spelling oai:doaj.org-article:b9196fa6a62747739d23a6e66620fbd12021-11-25T19:09:32ZOn the Vacuum Structure of the <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> Conformal Supergravity10.3390/universe71104092218-1997https://doaj.org/article/b9196fa6a62747739d23a6e66620fbd12021-10-01T00:00:00Zhttps://www.mdpi.com/2218-1997/7/11/409https://doaj.org/toc/2218-1997We consider <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> conformal supergravity with an arbitrary holomorphic function of the complex scalar <i>S</i> which parametrizes the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>U</mi><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>U</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> coset. Assuming non-vanishings vevs for <i>S</i> and the scalars in a symmetric matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></semantics></math></inline-formula> of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mn mathvariant="bold">10</mn><mo>¯</mo></mover></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>U</mi><mo>(</mo><mn>4</mn><mo>)</mo></mrow></semantics></math></inline-formula> R-symmetry group, we determine the vacuum structure of the theory. We find that the possible vacua are classified by the number of zero eigenvalues of the scalar matrix and the spacetime is either Minkowski, de Sitter, or anti-de Sitter. We determine the spectrum of the scalar fluctuations and we find that it contains tachyonic states which, however, can be removed by appropriate choice of the unspecified at the supergravity level holomorphic function. Finally, we also establish that <i>S</i>-supersymmetry is always broken whereas <i>Q</i>-supersymmetry exists only on flat Minkowski spacetime.Ioannis DalianisAlex KehagiasIoannis TaskasGeorge TringasMDPI AGarticlesupergravityconformal symmetryweyl gravityconformal supergravityElementary particle physicsQC793-793.5ENUniverse, Vol 7, Iss 409, p 409 (2021)
institution DOAJ
collection DOAJ
language EN
topic supergravity
conformal symmetry
weyl gravity
conformal supergravity
Elementary particle physics
QC793-793.5
spellingShingle supergravity
conformal symmetry
weyl gravity
conformal supergravity
Elementary particle physics
QC793-793.5
Ioannis Dalianis
Alex Kehagias
Ioannis Taskas
George Tringas
On the Vacuum Structure of the <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> Conformal Supergravity
description We consider <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> conformal supergravity with an arbitrary holomorphic function of the complex scalar <i>S</i> which parametrizes the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>U</mi><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>U</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> coset. Assuming non-vanishings vevs for <i>S</i> and the scalars in a symmetric matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></semantics></math></inline-formula> of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mn mathvariant="bold">10</mn><mo>¯</mo></mover></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>U</mi><mo>(</mo><mn>4</mn><mo>)</mo></mrow></semantics></math></inline-formula> R-symmetry group, we determine the vacuum structure of the theory. We find that the possible vacua are classified by the number of zero eigenvalues of the scalar matrix and the spacetime is either Minkowski, de Sitter, or anti-de Sitter. We determine the spectrum of the scalar fluctuations and we find that it contains tachyonic states which, however, can be removed by appropriate choice of the unspecified at the supergravity level holomorphic function. Finally, we also establish that <i>S</i>-supersymmetry is always broken whereas <i>Q</i>-supersymmetry exists only on flat Minkowski spacetime.
format article
author Ioannis Dalianis
Alex Kehagias
Ioannis Taskas
George Tringas
author_facet Ioannis Dalianis
Alex Kehagias
Ioannis Taskas
George Tringas
author_sort Ioannis Dalianis
title On the Vacuum Structure of the <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> Conformal Supergravity
title_short On the Vacuum Structure of the <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> Conformal Supergravity
title_full On the Vacuum Structure of the <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> Conformal Supergravity
title_fullStr On the Vacuum Structure of the <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> Conformal Supergravity
title_full_unstemmed On the Vacuum Structure of the <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> Conformal Supergravity
title_sort on the vacuum structure of the <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">n</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> conformal supergravity
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/b9196fa6a62747739d23a6e66620fbd1
work_keys_str_mv AT ioannisdalianis onthevacuumstructureoftheinlineformulamathdisplayinlinesemanticsmrowmimathvariantscriptnmimomomn4mnmrowsemanticsmathinlineformulaconformalsupergravity
AT alexkehagias onthevacuumstructureoftheinlineformulamathdisplayinlinesemanticsmrowmimathvariantscriptnmimomomn4mnmrowsemanticsmathinlineformulaconformalsupergravity
AT ioannistaskas onthevacuumstructureoftheinlineformulamathdisplayinlinesemanticsmrowmimathvariantscriptnmimomomn4mnmrowsemanticsmathinlineformulaconformalsupergravity
AT georgetringas onthevacuumstructureoftheinlineformulamathdisplayinlinesemanticsmrowmimathvariantscriptnmimomomn4mnmrowsemanticsmathinlineformulaconformalsupergravity
_version_ 1718410238727553024