On the Vacuum Structure of the <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> Conformal Supergravity
We consider <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math><...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b9196fa6a62747739d23a6e66620fbd1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b9196fa6a62747739d23a6e66620fbd1 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b9196fa6a62747739d23a6e66620fbd12021-11-25T19:09:32ZOn the Vacuum Structure of the <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> Conformal Supergravity10.3390/universe71104092218-1997https://doaj.org/article/b9196fa6a62747739d23a6e66620fbd12021-10-01T00:00:00Zhttps://www.mdpi.com/2218-1997/7/11/409https://doaj.org/toc/2218-1997We consider <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> conformal supergravity with an arbitrary holomorphic function of the complex scalar <i>S</i> which parametrizes the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>U</mi><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>U</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> coset. Assuming non-vanishings vevs for <i>S</i> and the scalars in a symmetric matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></semantics></math></inline-formula> of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mn mathvariant="bold">10</mn><mo>¯</mo></mover></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>U</mi><mo>(</mo><mn>4</mn><mo>)</mo></mrow></semantics></math></inline-formula> R-symmetry group, we determine the vacuum structure of the theory. We find that the possible vacua are classified by the number of zero eigenvalues of the scalar matrix and the spacetime is either Minkowski, de Sitter, or anti-de Sitter. We determine the spectrum of the scalar fluctuations and we find that it contains tachyonic states which, however, can be removed by appropriate choice of the unspecified at the supergravity level holomorphic function. Finally, we also establish that <i>S</i>-supersymmetry is always broken whereas <i>Q</i>-supersymmetry exists only on flat Minkowski spacetime.Ioannis DalianisAlex KehagiasIoannis TaskasGeorge TringasMDPI AGarticlesupergravityconformal symmetryweyl gravityconformal supergravityElementary particle physicsQC793-793.5ENUniverse, Vol 7, Iss 409, p 409 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
supergravity conformal symmetry weyl gravity conformal supergravity Elementary particle physics QC793-793.5 |
spellingShingle |
supergravity conformal symmetry weyl gravity conformal supergravity Elementary particle physics QC793-793.5 Ioannis Dalianis Alex Kehagias Ioannis Taskas George Tringas On the Vacuum Structure of the <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> Conformal Supergravity |
description |
We consider <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> conformal supergravity with an arbitrary holomorphic function of the complex scalar <i>S</i> which parametrizes the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>U</mi><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>U</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> coset. Assuming non-vanishings vevs for <i>S</i> and the scalars in a symmetric matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></semantics></math></inline-formula> of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mn mathvariant="bold">10</mn><mo>¯</mo></mover></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>U</mi><mo>(</mo><mn>4</mn><mo>)</mo></mrow></semantics></math></inline-formula> R-symmetry group, we determine the vacuum structure of the theory. We find that the possible vacua are classified by the number of zero eigenvalues of the scalar matrix and the spacetime is either Minkowski, de Sitter, or anti-de Sitter. We determine the spectrum of the scalar fluctuations and we find that it contains tachyonic states which, however, can be removed by appropriate choice of the unspecified at the supergravity level holomorphic function. Finally, we also establish that <i>S</i>-supersymmetry is always broken whereas <i>Q</i>-supersymmetry exists only on flat Minkowski spacetime. |
format |
article |
author |
Ioannis Dalianis Alex Kehagias Ioannis Taskas George Tringas |
author_facet |
Ioannis Dalianis Alex Kehagias Ioannis Taskas George Tringas |
author_sort |
Ioannis Dalianis |
title |
On the Vacuum Structure of the <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> Conformal Supergravity |
title_short |
On the Vacuum Structure of the <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> Conformal Supergravity |
title_full |
On the Vacuum Structure of the <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> Conformal Supergravity |
title_fullStr |
On the Vacuum Structure of the <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> Conformal Supergravity |
title_full_unstemmed |
On the Vacuum Structure of the <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> Conformal Supergravity |
title_sort |
on the vacuum structure of the <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">n</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> conformal supergravity |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/b9196fa6a62747739d23a6e66620fbd1 |
work_keys_str_mv |
AT ioannisdalianis onthevacuumstructureoftheinlineformulamathdisplayinlinesemanticsmrowmimathvariantscriptnmimomomn4mnmrowsemanticsmathinlineformulaconformalsupergravity AT alexkehagias onthevacuumstructureoftheinlineformulamathdisplayinlinesemanticsmrowmimathvariantscriptnmimomomn4mnmrowsemanticsmathinlineformulaconformalsupergravity AT ioannistaskas onthevacuumstructureoftheinlineformulamathdisplayinlinesemanticsmrowmimathvariantscriptnmimomomn4mnmrowsemanticsmathinlineformulaconformalsupergravity AT georgetringas onthevacuumstructureoftheinlineformulamathdisplayinlinesemanticsmrowmimathvariantscriptnmimomomn4mnmrowsemanticsmathinlineformulaconformalsupergravity |
_version_ |
1718410238727553024 |