Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data
Multiple sclerosis is a heterogeneous progressive disease. Here, the authors use an unsupervised machine learning algorithm to determine multiple sclerosis subtypes, progression, and response to potential therapeutic treatments based on neuroimaging data.
Guardado en:
Autores principales: | Arman Eshaghi, Alexandra L. Young, Peter A. Wijeratne, Ferran Prados, Douglas L. Arnold, Sridar Narayanan, Charles R. G. Guttmann, Frederik Barkhof, Daniel C. Alexander, Alan J. Thompson, Declan Chard, Olga Ciccarelli |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b925ea625e9146fc8c9474dea8ca687b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data
por: Arman Eshaghi, et al.
Publicado: (2021) -
Structural cortical network reorganization associated with early conversion to multiple sclerosis
por: C. Tur, et al.
Publicado: (2018) -
CSF proteome in multiple sclerosis subtypes related to brain lesion transcriptomes
por: Maria L. Elkjaer, et al.
Publicado: (2021) -
Assessing Lumbar Plexus and Sciatic Nerve Damage in Relapsing-Remitting Multiple Sclerosis Using Magnetisation Transfer Ratio
por: Ratthaporn Boonsuth, et al.
Publicado: (2021) -
Cognitive and clinical dysfunction, altered MEG resting-state networks and thalamic atrophy in multiple sclerosis.
por: Prejaas Tewarie, et al.
Publicado: (2013)