An Eigenmode Study of Nanoantennas from Terahertz to Optical Frequencies

In this work, we present a rigorous full-wave eigenanalysis for the study of nanoantennas operating at both terahertz (THz) (0.1–10 THz), and infrared/optical (10–750 THz) frequency spectrums. The key idea behind this effort is to reveal the physical characteristics of nanoantennas such that we can...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Konstantinos D. Paschaloudis, Constantinos L. Zekios, Georgios C. Trichopoulos, Filippos Farmakis, George A. Kyriacou
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/b942875841394c4abea7e4ce1e300fb3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b942875841394c4abea7e4ce1e300fb3
record_format dspace
spelling oai:doaj.org-article:b942875841394c4abea7e4ce1e300fb32021-11-25T17:24:36ZAn Eigenmode Study of Nanoantennas from Terahertz to Optical Frequencies10.3390/electronics102227822079-9292https://doaj.org/article/b942875841394c4abea7e4ce1e300fb32021-11-01T00:00:00Zhttps://www.mdpi.com/2079-9292/10/22/2782https://doaj.org/toc/2079-9292In this work, we present a rigorous full-wave eigenanalysis for the study of nanoantennas operating at both terahertz (THz) (0.1–10 THz), and infrared/optical (10–750 THz) frequency spectrums. The key idea behind this effort is to reveal the physical characteristics of nanoantennas such that we can transfer and apply the state-of-the-art antenna design methodologies from microwaves to terahertz and optics. Extensive attention is given to penetration depth in metals to reveal whether the surface currents are sufficient for the correct characterization of nanoantennas, or the involvement of volume currents is needed. As we show with our analysis, the penetration depth constantly reduces until the region of 200 THz; beyond this point, it shoots up, requiring volume currents for the exact characterization of the corresponding radiating structures. The cases of a terahertz rectangular patch antenna and a plasmonic nanoantenna are modeled, showing in each case the need of surface and volume currents, respectively, for the antenna’s efficient characterization.Konstantinos D. PaschaloudisConstantinos L. ZekiosGeorgios C. TrichopoulosFilippos FarmakisGeorge A. KyriacouMDPI AGarticleterahertz antennasoptical nanoantennaseigenanalysisfinite element methodLorentz–Drude modelElectronicsTK7800-8360ENElectronics, Vol 10, Iss 2782, p 2782 (2021)
institution DOAJ
collection DOAJ
language EN
topic terahertz antennas
optical nanoantennas
eigenanalysis
finite element method
Lorentz–Drude model
Electronics
TK7800-8360
spellingShingle terahertz antennas
optical nanoantennas
eigenanalysis
finite element method
Lorentz–Drude model
Electronics
TK7800-8360
Konstantinos D. Paschaloudis
Constantinos L. Zekios
Georgios C. Trichopoulos
Filippos Farmakis
George A. Kyriacou
An Eigenmode Study of Nanoantennas from Terahertz to Optical Frequencies
description In this work, we present a rigorous full-wave eigenanalysis for the study of nanoantennas operating at both terahertz (THz) (0.1–10 THz), and infrared/optical (10–750 THz) frequency spectrums. The key idea behind this effort is to reveal the physical characteristics of nanoantennas such that we can transfer and apply the state-of-the-art antenna design methodologies from microwaves to terahertz and optics. Extensive attention is given to penetration depth in metals to reveal whether the surface currents are sufficient for the correct characterization of nanoantennas, or the involvement of volume currents is needed. As we show with our analysis, the penetration depth constantly reduces until the region of 200 THz; beyond this point, it shoots up, requiring volume currents for the exact characterization of the corresponding radiating structures. The cases of a terahertz rectangular patch antenna and a plasmonic nanoantenna are modeled, showing in each case the need of surface and volume currents, respectively, for the antenna’s efficient characterization.
format article
author Konstantinos D. Paschaloudis
Constantinos L. Zekios
Georgios C. Trichopoulos
Filippos Farmakis
George A. Kyriacou
author_facet Konstantinos D. Paschaloudis
Constantinos L. Zekios
Georgios C. Trichopoulos
Filippos Farmakis
George A. Kyriacou
author_sort Konstantinos D. Paschaloudis
title An Eigenmode Study of Nanoantennas from Terahertz to Optical Frequencies
title_short An Eigenmode Study of Nanoantennas from Terahertz to Optical Frequencies
title_full An Eigenmode Study of Nanoantennas from Terahertz to Optical Frequencies
title_fullStr An Eigenmode Study of Nanoantennas from Terahertz to Optical Frequencies
title_full_unstemmed An Eigenmode Study of Nanoantennas from Terahertz to Optical Frequencies
title_sort eigenmode study of nanoantennas from terahertz to optical frequencies
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/b942875841394c4abea7e4ce1e300fb3
work_keys_str_mv AT konstantinosdpaschaloudis aneigenmodestudyofnanoantennasfromterahertztoopticalfrequencies
AT constantinoslzekios aneigenmodestudyofnanoantennasfromterahertztoopticalfrequencies
AT georgiosctrichopoulos aneigenmodestudyofnanoantennasfromterahertztoopticalfrequencies
AT filipposfarmakis aneigenmodestudyofnanoantennasfromterahertztoopticalfrequencies
AT georgeakyriacou aneigenmodestudyofnanoantennasfromterahertztoopticalfrequencies
AT konstantinosdpaschaloudis eigenmodestudyofnanoantennasfromterahertztoopticalfrequencies
AT constantinoslzekios eigenmodestudyofnanoantennasfromterahertztoopticalfrequencies
AT georgiosctrichopoulos eigenmodestudyofnanoantennasfromterahertztoopticalfrequencies
AT filipposfarmakis eigenmodestudyofnanoantennasfromterahertztoopticalfrequencies
AT georgeakyriacou eigenmodestudyofnanoantennasfromterahertztoopticalfrequencies
_version_ 1718412431887171584