Small Object Detection in Traffic Scenes Based on YOLO-MXANet
In terms of small objects in traffic scenes, general object detection algorithms have low detection accuracy, high model complexity, and slow detection speed. To solve the above problems, an improved algorithm (named YOLO-MXANet) is proposed in this paper. Complete-Intersection over Union (CIoU) is...
Guardado en:
Autores principales: | Xiaowei He, Rao Cheng, Zhonglong Zheng, Zeji Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b942a46497854050b3258785541471a8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
YOLO Algorithm for Detecting People in Social Distancing System
por: Faisal Dharma Adhinata, et al.
Publicado: (2021) -
Identifying Damaged Buildings in Aerial Images Using the Object Detection Method
por: Lingfei Shi, et al.
Publicado: (2021) -
Lightweight Underwater Object Detection Based on YOLO v4 and Multi-Scale Attentional Feature Fusion
por: Minghua Zhang, et al.
Publicado: (2021) -
YOT-Net: YOLOv3 Combined Triplet Loss Network for Copper Elbow Surface Defect Detection
por: Yuanqing Xian, et al.
Publicado: (2021) -
Urban Safety: An Image-Processing and Deep-Learning-Based Intelligent Traffic Management and Control System
por: Selim Reza, et al.
Publicado: (2021)