Manifold Feature Fusion with Dynamical Feature Selection for Cross-Subject Emotion Recognition
Affective computing systems can decode cortical activities to facilitate emotional human–computer interaction. However, personalities exist in neurophysiological responses among different users of the brain–computer interface leads to a difficulty for designing a generic emotion recognizer that is a...
Guardado en:
Autores principales: | Yue Hua, Xiaolong Zhong, Bingxue Zhang, Zhong Yin, Jianhua Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b94e1a60f2194e8babba768da21e668a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Application of Electroencephalography-Based Machine Learning in Emotion Recognition: A Review
por: Jing Cai, et al.
Publicado: (2021) -
Deep Cross-Corpus Speech Emotion Recognition: Recent Advances and Perspectives
por: Shiqing Zhang, et al.
Publicado: (2021) -
A facial expression recognition method based on face texture feature fusion
por: Tingting GAO, et al.
Publicado: (2021) -
Two-Stage Recognition and beyond for Compound Facial Emotion Recognition
por: Dorota Kamińska, et al.
Publicado: (2021) -
Human Gait Recognition: A Single Stream Optimal Deep Learning Features Fusion
por: Faizan Saleem, et al.
Publicado: (2021)