Manifold Feature Fusion with Dynamical Feature Selection for Cross-Subject Emotion Recognition
Affective computing systems can decode cortical activities to facilitate emotional human–computer interaction. However, personalities exist in neurophysiological responses among different users of the brain–computer interface leads to a difficulty for designing a generic emotion recognizer that is a...
Enregistré dans:
Auteurs principaux: | Yue Hua, Xiaolong Zhong, Bingxue Zhang, Zhong Yin, Jianhua Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b94e1a60f2194e8babba768da21e668a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Application of Electroencephalography-Based Machine Learning in Emotion Recognition: A Review
par: Jing Cai, et autres
Publié: (2021) -
Deep Cross-Corpus Speech Emotion Recognition: Recent Advances and Perspectives
par: Shiqing Zhang, et autres
Publié: (2021) -
A facial expression recognition method based on face texture feature fusion
par: Tingting GAO, et autres
Publié: (2021) -
Two-Stage Recognition and beyond for Compound Facial Emotion Recognition
par: Dorota Kamińska, et autres
Publié: (2021) -
Human Gait Recognition: A Single Stream Optimal Deep Learning Features Fusion
par: Faizan Saleem, et autres
Publié: (2021)