Enhancement of Multi-Class Structural Defect Recognition Using Generative Adversarial Network
Recently, in the building and infrastructure fields, studies on defect detection methods using deep learning have been widely implemented. For robust automatic recognition of defects in buildings, a sufficiently large training dataset is required for the target defects. However, it is challenging to...
Guardado en:
Autores principales: | Hyunkyu Shin, Yonghan Ahn, Sungho Tae, Heungbae Gil, Mihwa Song, Sanghyo Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b9565b511d28407abd376d9ce7a1744d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
por: Chuan Du, et al.
Publicado: (2021) -
Low-Light Image Enhancement Based on Generative Adversarial Network
por: Nandhini Abirami R., et al.
Publicado: (2021) -
A Multi-Stage GAN for Multi-Organ Chest X-ray Image Generation and Segmentation
por: Giorgio Ciano, et al.
Publicado: (2021) -
Generation of High-Precision Ground Penetrating Radar Images Using Improved Least Square Generative Adversarial Networks
por: Yunpeng Yue, et al.
Publicado: (2021) -
Textured Mesh Generation Using Multi-View and Multi-Source Supervision and Generative Adversarial Networks
por: Mingyun Wen, et al.
Publicado: (2021)