Tensor Renormalization Group for interacting quantum fields
We present a new tensor network algorithm for calculating the partition function of interacting quantum field theories in 2 dimensions. It is based on the Tensor Renormalization Group (TRG) protocol, adapted to operate entirely at the level of fields. This strategy was applied in Ref.[1] to the much...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b956eb1779684996b09dec955cf515c4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | We present a new tensor network algorithm for calculating the partition function of interacting quantum field theories in 2 dimensions. It is based on the Tensor Renormalization Group (TRG) protocol, adapted to operate entirely at the level of fields. This strategy was applied in Ref.[1] to the much simpler case of a free boson, obtaining an excellent performance. Here we include an arbitrary self-interaction and treat it in the context of perturbation theory. A real space analogue of the Wilsonian effective action and its expansion in Feynman graphs is proposed. Using a $\lambda \phi^4$ theory for benchmark, we evaluate the order $\lambda$ correction to the free energy. The results show a fast convergence with the bond dimension, implying that our algorithm captures well the effect of interaction on entanglement. |
---|