Tensor Renormalization Group for interacting quantum fields

We present a new tensor network algorithm for calculating the partition function of interacting quantum field theories in 2 dimensions. It is based on the Tensor Renormalization Group (TRG) protocol, adapted to operate entirely at the level of fields. This strategy was applied in Ref.[1] to the much...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Manuel Campos, German Sierra, Esperanza Lopez
Formato: article
Lenguaje:EN
Publicado: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2021
Materias:
Acceso en línea:https://doaj.org/article/b956eb1779684996b09dec955cf515c4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b956eb1779684996b09dec955cf515c4
record_format dspace
spelling oai:doaj.org-article:b956eb1779684996b09dec955cf515c42021-11-23T16:36:03ZTensor Renormalization Group for interacting quantum fields2521-327X10.22331/q-2021-11-23-586https://doaj.org/article/b956eb1779684996b09dec955cf515c42021-11-01T00:00:00Zhttps://quantum-journal.org/papers/q-2021-11-23-586/pdf/https://doaj.org/toc/2521-327XWe present a new tensor network algorithm for calculating the partition function of interacting quantum field theories in 2 dimensions. It is based on the Tensor Renormalization Group (TRG) protocol, adapted to operate entirely at the level of fields. This strategy was applied in Ref.[1] to the much simpler case of a free boson, obtaining an excellent performance. Here we include an arbitrary self-interaction and treat it in the context of perturbation theory. A real space analogue of the Wilsonian effective action and its expansion in Feynman graphs is proposed. Using a $\lambda \phi^4$ theory for benchmark, we evaluate the order $\lambda$ correction to the free energy. The results show a fast convergence with the bond dimension, implying that our algorithm captures well the effect of interaction on entanglement.Manuel CamposGerman SierraEsperanza LopezVerein zur Förderung des Open Access Publizierens in den QuantenwissenschaftenarticlePhysicsQC1-999ENQuantum, Vol 5, p 586 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
Manuel Campos
German Sierra
Esperanza Lopez
Tensor Renormalization Group for interacting quantum fields
description We present a new tensor network algorithm for calculating the partition function of interacting quantum field theories in 2 dimensions. It is based on the Tensor Renormalization Group (TRG) protocol, adapted to operate entirely at the level of fields. This strategy was applied in Ref.[1] to the much simpler case of a free boson, obtaining an excellent performance. Here we include an arbitrary self-interaction and treat it in the context of perturbation theory. A real space analogue of the Wilsonian effective action and its expansion in Feynman graphs is proposed. Using a $\lambda \phi^4$ theory for benchmark, we evaluate the order $\lambda$ correction to the free energy. The results show a fast convergence with the bond dimension, implying that our algorithm captures well the effect of interaction on entanglement.
format article
author Manuel Campos
German Sierra
Esperanza Lopez
author_facet Manuel Campos
German Sierra
Esperanza Lopez
author_sort Manuel Campos
title Tensor Renormalization Group for interacting quantum fields
title_short Tensor Renormalization Group for interacting quantum fields
title_full Tensor Renormalization Group for interacting quantum fields
title_fullStr Tensor Renormalization Group for interacting quantum fields
title_full_unstemmed Tensor Renormalization Group for interacting quantum fields
title_sort tensor renormalization group for interacting quantum fields
publisher Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
publishDate 2021
url https://doaj.org/article/b956eb1779684996b09dec955cf515c4
work_keys_str_mv AT manuelcampos tensorrenormalizationgroupforinteractingquantumfields
AT germansierra tensorrenormalizationgroupforinteractingquantumfields
AT esperanzalopez tensorrenormalizationgroupforinteractingquantumfields
_version_ 1718416234232414208