Machine Learning Algorithms to Predict In-Hospital Mortality in Patients with Traumatic Brain Injury
Traumatic brain injury (TBI) can lead to severe adverse clinical outcomes, including death and disability. Early detection of in-hospital mortality in high-risk populations may enable early treatment and potentially reduce mortality using machine learning. However, there is limited information on in...
Guardado en:
Autores principales: | Sheng-Der Hsu, En Chao, Sy-Jou Chen, Dueng-Yuan Hueng, Hsiang-Yun Lan, Hui-Hsun Chiang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b95ca00222b442da8d7599de820ae4c7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Gender differences in adult traumatic brain injury according to the Glasgow coma scale: A multicenter descriptive study
por: Ki Seong Eom, et al.
Publicado: (2021) -
Incidence of Paroxysmal Sympathetic Hyperactivity after Traumatic Brain Injury in a Tertiary Care ICU: A Retrospective Cohort Study
por: Ajit Bhardwaj, et al.
Publicado: (2021) -
Effects of cerebrolysin on functional outcome of patients with traumatic brain injury: a systematic review and meta-analysis
por: Ghaffarpasand F, et al.
Publicado: (2018) -
Correlation of D-Dimer level with outcome in traumatic brain injury
por: Pradip Prasad Subedi, et al.
Publicado: (2016) -
Isolated traumatic acute subdural haematoma: outcome in relation to age, Glasgow Coma Scale, and haematoma thickness
por: Mohamed A. Ragaee, et al.
Publicado: (2021)