An Effective Algorithm for Optimizing Surprise in Network Community Detection
Many methods have been proposed to detect communities/modules in various networks such as biological molecular networks and disease networks, while optimizing statistical measures for community structures is one of the most popular ways for community detection. Surprise, which is a statistical measu...
Enregistré dans:
Auteurs principaux: | Yan-Ni Tang, Ju Xiang, Yuan-Yuan Gao, Zhi-Zhong Wang, Hui-Jia Li, Shi Chen, Yan Zhang, Jian-Ming Li, Yong-Hong Tang, Yong-Jun Chen |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b962e79c8ed34d83b0db87ef3b15e781 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The Yield Curve Factors and Economic Surprises in the Chilean Bond Market
par: Ceballos,Luis
Publié: (2014) -
The Influence of Negative Surprise on Hedonic Adaptation
par: Ana Paula Kieling, et autres
Publié: (2016) -
Risk of Refractive Prediction Error After Cataract Surgery in Patients with Thyroid Eye Disease
par: Strong Caldwell A, et autres
Publié: (2021) -
An Approach to Detect Anomaly in Video Using Deep Generative Network
par: Savath Saypadith, et autres
Publié: (2021) -
A lightweight model for multi-traffic object detection based on deep learning under complex traffic conditions
par: Guoqiang Chen, et autres
Publié: (2021)