Experimental demonstration of a concave grating for spin waves in the Rowland arrangement
Abstract We experimentally demonstrate the operation of a Rowland-type concave grating for spin waves, with potential application as a microwave spectrometer. In this device geometry, spin waves are coherently excited on a diffraction grating and form an interference pattern that focuses spin waves...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b96bd26c33aa40dd9c979cf34eb21de8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b96bd26c33aa40dd9c979cf34eb21de8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b96bd26c33aa40dd9c979cf34eb21de82021-12-02T16:14:56ZExperimental demonstration of a concave grating for spin waves in the Rowland arrangement10.1038/s41598-021-93700-z2045-2322https://doaj.org/article/b96bd26c33aa40dd9c979cf34eb21de82021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-93700-zhttps://doaj.org/toc/2045-2322Abstract We experimentally demonstrate the operation of a Rowland-type concave grating for spin waves, with potential application as a microwave spectrometer. In this device geometry, spin waves are coherently excited on a diffraction grating and form an interference pattern that focuses spin waves to a point corresponding to their frequency. The diffraction grating was created by focused-ion-beam irradiation, which was found to locally eliminate the ferrimagnetic properties of YIG, without removing the material. We found that in our experiments spin waves were created by an indirect excitation mechanism, by exploiting nonlinear resonance between the grating and the coplanar waveguide. Although our demonstration does not include separation of multiple frequency components, since this is not possible if the nonlinear excitation mechanism is used, we believe that using linear excitation the same device geometry could be used as a spectrometer. Our work paves the way for complex spin-wave optic devices—chips that replicate the functionality of integrated optical devices on a chip-scale.Ádám PappMartina KiechleSimon MendischValentin AhrensLevent SahinLukas SeitnerWolfgang PorodGyorgy CsabaMarkus BechererNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Ádám Papp Martina Kiechle Simon Mendisch Valentin Ahrens Levent Sahin Lukas Seitner Wolfgang Porod Gyorgy Csaba Markus Becherer Experimental demonstration of a concave grating for spin waves in the Rowland arrangement |
description |
Abstract We experimentally demonstrate the operation of a Rowland-type concave grating for spin waves, with potential application as a microwave spectrometer. In this device geometry, spin waves are coherently excited on a diffraction grating and form an interference pattern that focuses spin waves to a point corresponding to their frequency. The diffraction grating was created by focused-ion-beam irradiation, which was found to locally eliminate the ferrimagnetic properties of YIG, without removing the material. We found that in our experiments spin waves were created by an indirect excitation mechanism, by exploiting nonlinear resonance between the grating and the coplanar waveguide. Although our demonstration does not include separation of multiple frequency components, since this is not possible if the nonlinear excitation mechanism is used, we believe that using linear excitation the same device geometry could be used as a spectrometer. Our work paves the way for complex spin-wave optic devices—chips that replicate the functionality of integrated optical devices on a chip-scale. |
format |
article |
author |
Ádám Papp Martina Kiechle Simon Mendisch Valentin Ahrens Levent Sahin Lukas Seitner Wolfgang Porod Gyorgy Csaba Markus Becherer |
author_facet |
Ádám Papp Martina Kiechle Simon Mendisch Valentin Ahrens Levent Sahin Lukas Seitner Wolfgang Porod Gyorgy Csaba Markus Becherer |
author_sort |
Ádám Papp |
title |
Experimental demonstration of a concave grating for spin waves in the Rowland arrangement |
title_short |
Experimental demonstration of a concave grating for spin waves in the Rowland arrangement |
title_full |
Experimental demonstration of a concave grating for spin waves in the Rowland arrangement |
title_fullStr |
Experimental demonstration of a concave grating for spin waves in the Rowland arrangement |
title_full_unstemmed |
Experimental demonstration of a concave grating for spin waves in the Rowland arrangement |
title_sort |
experimental demonstration of a concave grating for spin waves in the rowland arrangement |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/b96bd26c33aa40dd9c979cf34eb21de8 |
work_keys_str_mv |
AT adampapp experimentaldemonstrationofaconcavegratingforspinwavesintherowlandarrangement AT martinakiechle experimentaldemonstrationofaconcavegratingforspinwavesintherowlandarrangement AT simonmendisch experimentaldemonstrationofaconcavegratingforspinwavesintherowlandarrangement AT valentinahrens experimentaldemonstrationofaconcavegratingforspinwavesintherowlandarrangement AT leventsahin experimentaldemonstrationofaconcavegratingforspinwavesintherowlandarrangement AT lukasseitner experimentaldemonstrationofaconcavegratingforspinwavesintherowlandarrangement AT wolfgangporod experimentaldemonstrationofaconcavegratingforspinwavesintherowlandarrangement AT gyorgycsaba experimentaldemonstrationofaconcavegratingforspinwavesintherowlandarrangement AT markusbecherer experimentaldemonstrationofaconcavegratingforspinwavesintherowlandarrangement |
_version_ |
1718384314184368128 |