A Novel Low-Area Point Multiplication Architecture for Elliptic-Curve Cryptography
This paper presents a Point Multiplication (PM) architecture of Elliptic-Curve Cryptography (ECC) over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b97e7b65edd54319b13a8d39866ac902 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b97e7b65edd54319b13a8d39866ac902 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b97e7b65edd54319b13a8d39866ac9022021-11-11T15:41:30ZA Novel Low-Area Point Multiplication Architecture for Elliptic-Curve Cryptography10.3390/electronics102126982079-9292https://doaj.org/article/b97e7b65edd54319b13a8d39866ac9022021-11-01T00:00:00Zhttps://www.mdpi.com/2079-9292/10/21/2698https://doaj.org/toc/2079-9292This paper presents a Point Multiplication (PM) architecture of Elliptic-Curve Cryptography (ECC) over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mn>163</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula> with a focus on the optimization of hardware resources and latency at the same time. The hardware resources are reduced with the use of a bit-serial (traditional schoolbook) multiplication method. Similarly, the latency is optimized with the reduction in a critical path using pipeline registers. To cope with the pipelining, we propose to reschedule point addition and double instructions, required for the computation of a PM operation in ECC. Subsequently, the proposed architecture over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mn>163</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula> is modeled in Verilog Hardware Description Language (HDL) using Vivado Design Suite. To provide a fair performance evaluation, we synthesize our design on various FPGA (field-programmable gate array) devices. These FPGA devices are Virtex-4, Virtex-5, Virtex-6, Virtex-7, Spartan-7, Artix-7, and Kintex-7. The lowest area (433 FPGA slices) is achieved on Spartan-7. The highest speed is realized on Virtex-7, where our design achieves 391 MHz clock frequency and requires 416 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>s for one PM computation (latency). For power, the lowest values are achieved on the Artix-7 (56 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>W) and Kintex-7 (61 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>W) devices. A ratio of throughput over area value of 4.89 is reached for Virtex-7. Our design outperforms most recent state-of-the-art solutions (in terms of area) with an overhead of latency.Muhammad RashidMohammad Mazyad HazzaziSikandar Zulqarnain KhanAdel R. AlharbiAsher SajidAmer AljaediMDPI AGarticleelliptic-curve cryptographypoint multiplicationhardware architectureFPGAElectronicsTK7800-8360ENElectronics, Vol 10, Iss 2698, p 2698 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
elliptic-curve cryptography point multiplication hardware architecture FPGA Electronics TK7800-8360 |
spellingShingle |
elliptic-curve cryptography point multiplication hardware architecture FPGA Electronics TK7800-8360 Muhammad Rashid Mohammad Mazyad Hazzazi Sikandar Zulqarnain Khan Adel R. Alharbi Asher Sajid Amer Aljaedi A Novel Low-Area Point Multiplication Architecture for Elliptic-Curve Cryptography |
description |
This paper presents a Point Multiplication (PM) architecture of Elliptic-Curve Cryptography (ECC) over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mn>163</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula> with a focus on the optimization of hardware resources and latency at the same time. The hardware resources are reduced with the use of a bit-serial (traditional schoolbook) multiplication method. Similarly, the latency is optimized with the reduction in a critical path using pipeline registers. To cope with the pipelining, we propose to reschedule point addition and double instructions, required for the computation of a PM operation in ECC. Subsequently, the proposed architecture over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mn>163</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula> is modeled in Verilog Hardware Description Language (HDL) using Vivado Design Suite. To provide a fair performance evaluation, we synthesize our design on various FPGA (field-programmable gate array) devices. These FPGA devices are Virtex-4, Virtex-5, Virtex-6, Virtex-7, Spartan-7, Artix-7, and Kintex-7. The lowest area (433 FPGA slices) is achieved on Spartan-7. The highest speed is realized on Virtex-7, where our design achieves 391 MHz clock frequency and requires 416 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>s for one PM computation (latency). For power, the lowest values are achieved on the Artix-7 (56 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>W) and Kintex-7 (61 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>W) devices. A ratio of throughput over area value of 4.89 is reached for Virtex-7. Our design outperforms most recent state-of-the-art solutions (in terms of area) with an overhead of latency. |
format |
article |
author |
Muhammad Rashid Mohammad Mazyad Hazzazi Sikandar Zulqarnain Khan Adel R. Alharbi Asher Sajid Amer Aljaedi |
author_facet |
Muhammad Rashid Mohammad Mazyad Hazzazi Sikandar Zulqarnain Khan Adel R. Alharbi Asher Sajid Amer Aljaedi |
author_sort |
Muhammad Rashid |
title |
A Novel Low-Area Point Multiplication Architecture for Elliptic-Curve Cryptography |
title_short |
A Novel Low-Area Point Multiplication Architecture for Elliptic-Curve Cryptography |
title_full |
A Novel Low-Area Point Multiplication Architecture for Elliptic-Curve Cryptography |
title_fullStr |
A Novel Low-Area Point Multiplication Architecture for Elliptic-Curve Cryptography |
title_full_unstemmed |
A Novel Low-Area Point Multiplication Architecture for Elliptic-Curve Cryptography |
title_sort |
novel low-area point multiplication architecture for elliptic-curve cryptography |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/b97e7b65edd54319b13a8d39866ac902 |
work_keys_str_mv |
AT muhammadrashid anovellowareapointmultiplicationarchitectureforellipticcurvecryptography AT mohammadmazyadhazzazi anovellowareapointmultiplicationarchitectureforellipticcurvecryptography AT sikandarzulqarnainkhan anovellowareapointmultiplicationarchitectureforellipticcurvecryptography AT adelralharbi anovellowareapointmultiplicationarchitectureforellipticcurvecryptography AT ashersajid anovellowareapointmultiplicationarchitectureforellipticcurvecryptography AT ameraljaedi anovellowareapointmultiplicationarchitectureforellipticcurvecryptography AT muhammadrashid novellowareapointmultiplicationarchitectureforellipticcurvecryptography AT mohammadmazyadhazzazi novellowareapointmultiplicationarchitectureforellipticcurvecryptography AT sikandarzulqarnainkhan novellowareapointmultiplicationarchitectureforellipticcurvecryptography AT adelralharbi novellowareapointmultiplicationarchitectureforellipticcurvecryptography AT ashersajid novellowareapointmultiplicationarchitectureforellipticcurvecryptography AT ameraljaedi novellowareapointmultiplicationarchitectureforellipticcurvecryptography |
_version_ |
1718434242041479168 |