Magnetic Resonance Imaging Sequence Identification Using a Metadata Learning Approach

Despite the wide application of the magnetic resonance imaging (MRI) technique, there are no widely used standards on naming and describing MRI sequences. The absence of consistent naming conventions presents a major challenge in automating image processing since most MRI software require a priori k...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shuai Liang, Derek Beaton, Stephen R. Arnott, Tom Gee, Mojdeh Zamyadi, Robert Bartha, Sean Symons, Glenda M. MacQueen, Stefanie Hassel, Jason P. Lerch, Evdokia Anagnostou, Raymond W. Lam, Benicio N. Frey, Roumen Milev, Daniel J. Müller, Sidney H. Kennedy, Christopher J. M. Scott, The ONDRI Investigators, Stephen C. Strother, Angela Troyer, Anthony E. Lang, Barry Greenberg, Chris Hudson, Dale Corbett, David A. Grimes, David G. Munoz, Douglas P. Munoz, Elizabeth Finger, J. B. Orange, Lorne Zinman, Manuel Montero-Odasso, Maria Carmela Tartaglia, Mario Masellis, Michael Borrie, Michael J. Strong, Morris Freedman, Paula M. McLaughlin, Richard H. Swartz, Robert A. Hegele, Sandra E. Black, William E. McIlroy
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/b987f8f10e054d3e9bc11ba9f80a144f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b987f8f10e054d3e9bc11ba9f80a144f
record_format dspace
spelling oai:doaj.org-article:b987f8f10e054d3e9bc11ba9f80a144f2021-11-17T06:33:29ZMagnetic Resonance Imaging Sequence Identification Using a Metadata Learning Approach1662-519610.3389/fninf.2021.622951https://doaj.org/article/b987f8f10e054d3e9bc11ba9f80a144f2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fninf.2021.622951/fullhttps://doaj.org/toc/1662-5196Despite the wide application of the magnetic resonance imaging (MRI) technique, there are no widely used standards on naming and describing MRI sequences. The absence of consistent naming conventions presents a major challenge in automating image processing since most MRI software require a priori knowledge of the type of the MRI sequences to be processed. This issue becomes increasingly critical with the current efforts toward open-sharing of MRI data in the neuroscience community. This manuscript reports an MRI sequence detection method using imaging metadata and a supervised machine learning technique. Three datasets from the Brain Center for Ontario Data Exploration (Brain-CODE) data platform, each involving MRI data from multiple research institutes, are used to build and test our model. The preliminary results show that a random forest model can be trained to accurately identify MRI sequence types, and to recognize MRI scans that do not belong to any of the known sequence types. Therefore the proposed approach can be used to automate processing of MRI data that involves a large number of variations in sequence names, and to help standardize sequence naming in ongoing data collections. This study highlights the potential of the machine learning approaches in helping manage health data.Shuai LiangShuai LiangDerek BeatonStephen R. ArnottTom GeeMojdeh ZamyadiRobert BarthaSean SymonsGlenda M. MacQueenStefanie HasselJason P. LerchJason P. LerchEvdokia AnagnostouEvdokia AnagnostouRaymond W. LamBenicio N. FreyBenicio N. FreyRoumen MilevDaniel J. MüllerDaniel J. MüllerSidney H. KennedySidney H. KennedySidney H. KennedySidney H. KennedyChristopher J. M. ScottChristopher J. M. ScottChristopher J. M. ScottThe ONDRI InvestigatorsStephen C. StrotherStephen C. StrotherAngela TroyerAnthony E. LangBarry GreenbergChris HudsonDale CorbettDavid A. GrimesDavid G. MunozDouglas P. MunozElizabeth FingerJ. B. OrangeLorne ZinmanManuel Montero-OdassoMaria Carmela TartagliaMario MasellisMichael BorrieMichael J. StrongMorris FreedmanPaula M. McLaughlinRichard H. SwartzRobert A. HegeleRobert BarthaSandra E. BlackSean SymonsStephen C. StrotherWilliam E. McIlroyFrontiers Media S.A.articlehealth dataMRI sequence naming standardizationdata share and exchangemachine learningmetadata learningAI-assisted data managementNeurosciences. Biological psychiatry. NeuropsychiatryRC321-571ENFrontiers in Neuroinformatics, Vol 15 (2021)
institution DOAJ
collection DOAJ
language EN
topic health data
MRI sequence naming standardization
data share and exchange
machine learning
metadata learning
AI-assisted data management
Neurosciences. Biological psychiatry. Neuropsychiatry
RC321-571
spellingShingle health data
MRI sequence naming standardization
data share and exchange
machine learning
metadata learning
AI-assisted data management
Neurosciences. Biological psychiatry. Neuropsychiatry
RC321-571
Shuai Liang
Shuai Liang
Derek Beaton
Stephen R. Arnott
Tom Gee
Mojdeh Zamyadi
Robert Bartha
Sean Symons
Glenda M. MacQueen
Stefanie Hassel
Jason P. Lerch
Jason P. Lerch
Evdokia Anagnostou
Evdokia Anagnostou
Raymond W. Lam
Benicio N. Frey
Benicio N. Frey
Roumen Milev
Daniel J. Müller
Daniel J. Müller
Sidney H. Kennedy
Sidney H. Kennedy
Sidney H. Kennedy
Sidney H. Kennedy
Christopher J. M. Scott
Christopher J. M. Scott
Christopher J. M. Scott
The ONDRI Investigators
Stephen C. Strother
Stephen C. Strother
Angela Troyer
Anthony E. Lang
Barry Greenberg
Chris Hudson
Dale Corbett
David A. Grimes
David G. Munoz
Douglas P. Munoz
Elizabeth Finger
J. B. Orange
Lorne Zinman
Manuel Montero-Odasso
Maria Carmela Tartaglia
Mario Masellis
Michael Borrie
Michael J. Strong
Morris Freedman
Paula M. McLaughlin
Richard H. Swartz
Robert A. Hegele
Robert Bartha
Sandra E. Black
Sean Symons
Stephen C. Strother
William E. McIlroy
Magnetic Resonance Imaging Sequence Identification Using a Metadata Learning Approach
description Despite the wide application of the magnetic resonance imaging (MRI) technique, there are no widely used standards on naming and describing MRI sequences. The absence of consistent naming conventions presents a major challenge in automating image processing since most MRI software require a priori knowledge of the type of the MRI sequences to be processed. This issue becomes increasingly critical with the current efforts toward open-sharing of MRI data in the neuroscience community. This manuscript reports an MRI sequence detection method using imaging metadata and a supervised machine learning technique. Three datasets from the Brain Center for Ontario Data Exploration (Brain-CODE) data platform, each involving MRI data from multiple research institutes, are used to build and test our model. The preliminary results show that a random forest model can be trained to accurately identify MRI sequence types, and to recognize MRI scans that do not belong to any of the known sequence types. Therefore the proposed approach can be used to automate processing of MRI data that involves a large number of variations in sequence names, and to help standardize sequence naming in ongoing data collections. This study highlights the potential of the machine learning approaches in helping manage health data.
format article
author Shuai Liang
Shuai Liang
Derek Beaton
Stephen R. Arnott
Tom Gee
Mojdeh Zamyadi
Robert Bartha
Sean Symons
Glenda M. MacQueen
Stefanie Hassel
Jason P. Lerch
Jason P. Lerch
Evdokia Anagnostou
Evdokia Anagnostou
Raymond W. Lam
Benicio N. Frey
Benicio N. Frey
Roumen Milev
Daniel J. Müller
Daniel J. Müller
Sidney H. Kennedy
Sidney H. Kennedy
Sidney H. Kennedy
Sidney H. Kennedy
Christopher J. M. Scott
Christopher J. M. Scott
Christopher J. M. Scott
The ONDRI Investigators
Stephen C. Strother
Stephen C. Strother
Angela Troyer
Anthony E. Lang
Barry Greenberg
Chris Hudson
Dale Corbett
David A. Grimes
David G. Munoz
Douglas P. Munoz
Elizabeth Finger
J. B. Orange
Lorne Zinman
Manuel Montero-Odasso
Maria Carmela Tartaglia
Mario Masellis
Michael Borrie
Michael J. Strong
Morris Freedman
Paula M. McLaughlin
Richard H. Swartz
Robert A. Hegele
Robert Bartha
Sandra E. Black
Sean Symons
Stephen C. Strother
William E. McIlroy
author_facet Shuai Liang
Shuai Liang
Derek Beaton
Stephen R. Arnott
Tom Gee
Mojdeh Zamyadi
Robert Bartha
Sean Symons
Glenda M. MacQueen
Stefanie Hassel
Jason P. Lerch
Jason P. Lerch
Evdokia Anagnostou
Evdokia Anagnostou
Raymond W. Lam
Benicio N. Frey
Benicio N. Frey
Roumen Milev
Daniel J. Müller
Daniel J. Müller
Sidney H. Kennedy
Sidney H. Kennedy
Sidney H. Kennedy
Sidney H. Kennedy
Christopher J. M. Scott
Christopher J. M. Scott
Christopher J. M. Scott
The ONDRI Investigators
Stephen C. Strother
Stephen C. Strother
Angela Troyer
Anthony E. Lang
Barry Greenberg
Chris Hudson
Dale Corbett
David A. Grimes
David G. Munoz
Douglas P. Munoz
Elizabeth Finger
J. B. Orange
Lorne Zinman
Manuel Montero-Odasso
Maria Carmela Tartaglia
Mario Masellis
Michael Borrie
Michael J. Strong
Morris Freedman
Paula M. McLaughlin
Richard H. Swartz
Robert A. Hegele
Robert Bartha
Sandra E. Black
Sean Symons
Stephen C. Strother
William E. McIlroy
author_sort Shuai Liang
title Magnetic Resonance Imaging Sequence Identification Using a Metadata Learning Approach
title_short Magnetic Resonance Imaging Sequence Identification Using a Metadata Learning Approach
title_full Magnetic Resonance Imaging Sequence Identification Using a Metadata Learning Approach
title_fullStr Magnetic Resonance Imaging Sequence Identification Using a Metadata Learning Approach
title_full_unstemmed Magnetic Resonance Imaging Sequence Identification Using a Metadata Learning Approach
title_sort magnetic resonance imaging sequence identification using a metadata learning approach
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/b987f8f10e054d3e9bc11ba9f80a144f
work_keys_str_mv AT shuailiang magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT shuailiang magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT derekbeaton magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT stephenrarnott magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT tomgee magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT mojdehzamyadi magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT robertbartha magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT seansymons magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT glendammacqueen magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT stefaniehassel magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT jasonplerch magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT jasonplerch magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT evdokiaanagnostou magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT evdokiaanagnostou magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT raymondwlam magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT benicionfrey magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT benicionfrey magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT roumenmilev magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT danieljmuller magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT danieljmuller magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT sidneyhkennedy magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT sidneyhkennedy magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT sidneyhkennedy magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT sidneyhkennedy magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT christopherjmscott magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT christopherjmscott magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT christopherjmscott magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT theondriinvestigators magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT stephencstrother magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT stephencstrother magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT angelatroyer magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT anthonyelang magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT barrygreenberg magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT chrishudson magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT dalecorbett magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT davidagrimes magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT davidgmunoz magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT douglaspmunoz magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT elizabethfinger magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT jborange magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT lornezinman magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT manuelmonteroodasso magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT mariacarmelatartaglia magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT mariomasellis magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT michaelborrie magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT michaeljstrong magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT morrisfreedman magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT paulammclaughlin magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT richardhswartz magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT robertahegele magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT robertbartha magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT sandraeblack magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT seansymons magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT stephencstrother magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
AT williamemcilroy magneticresonanceimagingsequenceidentificationusingametadatalearningapproach
_version_ 1718425885229449216