Biological Effects of the Novel Mulberry Surface Characterized by Micro/Nanopores and Plasma-Based Graphene Oxide Deposition on Titanium

Hee-Seon Kim1 *, Min-Kyung Ji2 *, Woo-Hyung Jang1 *, Khurshed Alam,3 Hyun-Seung Kim,4 Hoon-Sung Cho,3 Hyun-Pil Lim1 1Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea; 2Optoelectronics Convergence Research Center, Chonn...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kim HS, Ji MK, Jang WH, Alam K, Cho HS, Lim HP
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2021
Materias:
Acceso en línea:https://doaj.org/article/b9888378d65f4437ac8db3fcb19a5f2c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b9888378d65f4437ac8db3fcb19a5f2c
record_format dspace
spelling oai:doaj.org-article:b9888378d65f4437ac8db3fcb19a5f2c2021-12-02T19:22:34ZBiological Effects of the Novel Mulberry Surface Characterized by Micro/Nanopores and Plasma-Based Graphene Oxide Deposition on Titanium1178-2013https://doaj.org/article/b9888378d65f4437ac8db3fcb19a5f2c2021-10-01T00:00:00Zhttps://www.dovepress.com/biological-effects-of-the-novel-mulberry-surface-characterized-by-micr-peer-reviewed-fulltext-article-IJNhttps://doaj.org/toc/1178-2013Hee-Seon Kim1 *, Min-Kyung Ji2 *, Woo-Hyung Jang1 *, Khurshed Alam,3 Hyun-Seung Kim,4 Hoon-Sung Cho,3 Hyun-Pil Lim1 1Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea; 2Optoelectronics Convergence Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea; 3Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; 4Department of Division of New Projects, KJ Meditech Co, Ltd, Gwangju, 61009, Republic of Korea*These authors contributed equally to this workCorrespondence: Hyun-Pil LimDepartment of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of KoreaTel +82-10-2645-7528Fax +82-62-530-5577Email mcnihil@jnu.ac.krHoon-Sung ChoDepartment of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Republic of KoreaTel +82-10-8545-2816Fax +82-62-530-1717Email cho.hoonsung@jnu.ac.krPurpose: This paper presents a technique for developing a novel surface for dental implants using a combination of nitriding and anodic oxidation, followed by the deposition of graphene oxide using atmospheric plasma. The effects of various surface treatments on bacterial adhesion and osteoblast activation were also evaluated.Methods: CP titanium (control) was processed into disk-shaped specimens. Nitriding was conducted using vacuum nitriding, followed by anodic oxidation, which was performed in an electrolyte using a DC power supply, to form the novel “mulberry surface.” Graphene oxide deposition was performed using atmospheric plasma with an inflow of carbon sources. After analyzing the sample surfaces, antibacterial activity was evaluated using Streptococcus mutans and Porphyromonas gingivalis bacteria. The viability, adhesion, proliferation, and differentiation of osteoblasts were also assessed. Analysis of variance (ANOVA) with Tukey’s post-hoc test was used to calculate statistical differences.Results: We observed that the mulberry surface was formed on samples treated with nitriding and anodic oxidation, and these samples exhibited more effective antibacterial activity than the control. We also found that the samples with additional graphene oxide deposition exhibited better biocompatibility, which was validated by osteoblast adhesion, proliferation, and differentiation.Conclusion: The development of the mulberry surface along with graphene oxide deposition inhibits bacterial adhesion to the implant and enhances the adhesion, proliferation, and differentiation of osteoblasts. These results indicate that the mulberry surface and graphene oxide deposition together can inhibit peri-implantitis and promote osseointegration.Keywords: nitriding, anodic oxidation, atmospheric plasma, biofilm formation, osteoblastsKim HSJi MKJang WHAlam KKim HSCho HSLim HPDove Medical Pressarticlenitridinganodic oxidationatmospheric plasmabiofilm formationosteoblastsMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 16, Pp 7307-7317 (2021)
institution DOAJ
collection DOAJ
language EN
topic nitriding
anodic oxidation
atmospheric plasma
biofilm formation
osteoblasts
Medicine (General)
R5-920
spellingShingle nitriding
anodic oxidation
atmospheric plasma
biofilm formation
osteoblasts
Medicine (General)
R5-920
Kim HS
Ji MK
Jang WH
Alam K
Kim HS
Cho HS
Lim HP
Biological Effects of the Novel Mulberry Surface Characterized by Micro/Nanopores and Plasma-Based Graphene Oxide Deposition on Titanium
description Hee-Seon Kim1 *, Min-Kyung Ji2 *, Woo-Hyung Jang1 *, Khurshed Alam,3 Hyun-Seung Kim,4 Hoon-Sung Cho,3 Hyun-Pil Lim1 1Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea; 2Optoelectronics Convergence Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea; 3Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; 4Department of Division of New Projects, KJ Meditech Co, Ltd, Gwangju, 61009, Republic of Korea*These authors contributed equally to this workCorrespondence: Hyun-Pil LimDepartment of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of KoreaTel +82-10-2645-7528Fax +82-62-530-5577Email mcnihil@jnu.ac.krHoon-Sung ChoDepartment of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Republic of KoreaTel +82-10-8545-2816Fax +82-62-530-1717Email cho.hoonsung@jnu.ac.krPurpose: This paper presents a technique for developing a novel surface for dental implants using a combination of nitriding and anodic oxidation, followed by the deposition of graphene oxide using atmospheric plasma. The effects of various surface treatments on bacterial adhesion and osteoblast activation were also evaluated.Methods: CP titanium (control) was processed into disk-shaped specimens. Nitriding was conducted using vacuum nitriding, followed by anodic oxidation, which was performed in an electrolyte using a DC power supply, to form the novel “mulberry surface.” Graphene oxide deposition was performed using atmospheric plasma with an inflow of carbon sources. After analyzing the sample surfaces, antibacterial activity was evaluated using Streptococcus mutans and Porphyromonas gingivalis bacteria. The viability, adhesion, proliferation, and differentiation of osteoblasts were also assessed. Analysis of variance (ANOVA) with Tukey’s post-hoc test was used to calculate statistical differences.Results: We observed that the mulberry surface was formed on samples treated with nitriding and anodic oxidation, and these samples exhibited more effective antibacterial activity than the control. We also found that the samples with additional graphene oxide deposition exhibited better biocompatibility, which was validated by osteoblast adhesion, proliferation, and differentiation.Conclusion: The development of the mulberry surface along with graphene oxide deposition inhibits bacterial adhesion to the implant and enhances the adhesion, proliferation, and differentiation of osteoblasts. These results indicate that the mulberry surface and graphene oxide deposition together can inhibit peri-implantitis and promote osseointegration.Keywords: nitriding, anodic oxidation, atmospheric plasma, biofilm formation, osteoblasts
format article
author Kim HS
Ji MK
Jang WH
Alam K
Kim HS
Cho HS
Lim HP
author_facet Kim HS
Ji MK
Jang WH
Alam K
Kim HS
Cho HS
Lim HP
author_sort Kim HS
title Biological Effects of the Novel Mulberry Surface Characterized by Micro/Nanopores and Plasma-Based Graphene Oxide Deposition on Titanium
title_short Biological Effects of the Novel Mulberry Surface Characterized by Micro/Nanopores and Plasma-Based Graphene Oxide Deposition on Titanium
title_full Biological Effects of the Novel Mulberry Surface Characterized by Micro/Nanopores and Plasma-Based Graphene Oxide Deposition on Titanium
title_fullStr Biological Effects of the Novel Mulberry Surface Characterized by Micro/Nanopores and Plasma-Based Graphene Oxide Deposition on Titanium
title_full_unstemmed Biological Effects of the Novel Mulberry Surface Characterized by Micro/Nanopores and Plasma-Based Graphene Oxide Deposition on Titanium
title_sort biological effects of the novel mulberry surface characterized by micro/nanopores and plasma-based graphene oxide deposition on titanium
publisher Dove Medical Press
publishDate 2021
url https://doaj.org/article/b9888378d65f4437ac8db3fcb19a5f2c
work_keys_str_mv AT kimhs biologicaleffectsofthenovelmulberrysurfacecharacterizedbymicronanoporesandplasmabasedgrapheneoxidedepositionontitanium
AT jimk biologicaleffectsofthenovelmulberrysurfacecharacterizedbymicronanoporesandplasmabasedgrapheneoxidedepositionontitanium
AT jangwh biologicaleffectsofthenovelmulberrysurfacecharacterizedbymicronanoporesandplasmabasedgrapheneoxidedepositionontitanium
AT alamk biologicaleffectsofthenovelmulberrysurfacecharacterizedbymicronanoporesandplasmabasedgrapheneoxidedepositionontitanium
AT kimhs biologicaleffectsofthenovelmulberrysurfacecharacterizedbymicronanoporesandplasmabasedgrapheneoxidedepositionontitanium
AT chohs biologicaleffectsofthenovelmulberrysurfacecharacterizedbymicronanoporesandplasmabasedgrapheneoxidedepositionontitanium
AT limhp biologicaleffectsofthenovelmulberrysurfacecharacterizedbymicronanoporesandplasmabasedgrapheneoxidedepositionontitanium
_version_ 1718376759229939712