Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense.

Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, path...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Saray Gutiérrez, Julia Fischer, Raja Ganesan, Nina Judith Hos, Gökhan Cildir, Martina Wolke, Alberto Pessia, Peter Frommolt, Vincenzo Desiderio, Vidya Velagapudi, Nirmal Robinson
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
Acceso en línea:https://doaj.org/article/b990dc2fb1bd4d26bb009ef804bbfd30
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b990dc2fb1bd4d26bb009ef804bbfd30
record_format dspace
spelling oai:doaj.org-article:b990dc2fb1bd4d26bb009ef804bbfd302021-12-02T20:00:06ZSalmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense.1553-73661553-737410.1371/journal.ppat.1009943https://doaj.org/article/b990dc2fb1bd4d26bb009ef804bbfd302021-09-01T00:00:00Zhttps://doi.org/10.1371/journal.ppat.1009943https://doaj.org/toc/1553-7366https://doaj.org/toc/1553-7374Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, pathogens also counteract these metabolic changes for their own survival in the host. Despite this dynamic interplay in host-pathogen interactions, the role of immunometabolism in the context of intracellular bacterial infections is still unclear. Here, employing unbiased metabolomic and transcriptomic approaches, we investigated the role of metabolic adaptations of macrophages upon Salmonella enterica serovar Typhimurium (S. Typhimurium) infections. Importantly, our results suggest that S. Typhimurium abrogates glycolysis and its modulators such as insulin-signaling to impair macrophage defense. Mechanistically, glycolysis facilitates glycolytic enzyme aldolase A mediated v-ATPase assembly and the acidification of phagosomes which is critical for lysosomal degradation. Thus, impairment in the glycolytic machinery eventually leads to decreased bacterial clearance and antigen presentation in murine macrophages (BMDM). Collectively, our results highlight a vital molecular link between metabolic adaptation and phagosome maturation in macrophages, which is targeted by S. Typhimurium to evade cell-autonomous defense.Saray GutiérrezJulia FischerRaja GanesanNina Judith HosGökhan CildirMartina WolkeAlberto PessiaPeter FrommoltVincenzo DesiderioVidya VelagapudiNirmal RobinsonPublic Library of Science (PLoS)articleImmunologic diseases. AllergyRC581-607Biology (General)QH301-705.5ENPLoS Pathogens, Vol 17, Iss 9, p e1009943 (2021)
institution DOAJ
collection DOAJ
language EN
topic Immunologic diseases. Allergy
RC581-607
Biology (General)
QH301-705.5
spellingShingle Immunologic diseases. Allergy
RC581-607
Biology (General)
QH301-705.5
Saray Gutiérrez
Julia Fischer
Raja Ganesan
Nina Judith Hos
Gökhan Cildir
Martina Wolke
Alberto Pessia
Peter Frommolt
Vincenzo Desiderio
Vidya Velagapudi
Nirmal Robinson
Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense.
description Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, pathogens also counteract these metabolic changes for their own survival in the host. Despite this dynamic interplay in host-pathogen interactions, the role of immunometabolism in the context of intracellular bacterial infections is still unclear. Here, employing unbiased metabolomic and transcriptomic approaches, we investigated the role of metabolic adaptations of macrophages upon Salmonella enterica serovar Typhimurium (S. Typhimurium) infections. Importantly, our results suggest that S. Typhimurium abrogates glycolysis and its modulators such as insulin-signaling to impair macrophage defense. Mechanistically, glycolysis facilitates glycolytic enzyme aldolase A mediated v-ATPase assembly and the acidification of phagosomes which is critical for lysosomal degradation. Thus, impairment in the glycolytic machinery eventually leads to decreased bacterial clearance and antigen presentation in murine macrophages (BMDM). Collectively, our results highlight a vital molecular link between metabolic adaptation and phagosome maturation in macrophages, which is targeted by S. Typhimurium to evade cell-autonomous defense.
format article
author Saray Gutiérrez
Julia Fischer
Raja Ganesan
Nina Judith Hos
Gökhan Cildir
Martina Wolke
Alberto Pessia
Peter Frommolt
Vincenzo Desiderio
Vidya Velagapudi
Nirmal Robinson
author_facet Saray Gutiérrez
Julia Fischer
Raja Ganesan
Nina Judith Hos
Gökhan Cildir
Martina Wolke
Alberto Pessia
Peter Frommolt
Vincenzo Desiderio
Vidya Velagapudi
Nirmal Robinson
author_sort Saray Gutiérrez
title Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense.
title_short Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense.
title_full Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense.
title_fullStr Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense.
title_full_unstemmed Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense.
title_sort salmonella typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/b990dc2fb1bd4d26bb009ef804bbfd30
work_keys_str_mv AT saraygutierrez salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense
AT juliafischer salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense
AT rajaganesan salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense
AT ninajudithhos salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense
AT gokhancildir salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense
AT martinawolke salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense
AT albertopessia salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense
AT peterfrommolt salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense
AT vincenzodesiderio salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense
AT vidyavelagapudi salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense
AT nirmalrobinson salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense
_version_ 1718375745511751680