Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense.
Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, path...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b990dc2fb1bd4d26bb009ef804bbfd30 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b990dc2fb1bd4d26bb009ef804bbfd30 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b990dc2fb1bd4d26bb009ef804bbfd302021-12-02T20:00:06ZSalmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense.1553-73661553-737410.1371/journal.ppat.1009943https://doaj.org/article/b990dc2fb1bd4d26bb009ef804bbfd302021-09-01T00:00:00Zhttps://doi.org/10.1371/journal.ppat.1009943https://doaj.org/toc/1553-7366https://doaj.org/toc/1553-7374Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, pathogens also counteract these metabolic changes for their own survival in the host. Despite this dynamic interplay in host-pathogen interactions, the role of immunometabolism in the context of intracellular bacterial infections is still unclear. Here, employing unbiased metabolomic and transcriptomic approaches, we investigated the role of metabolic adaptations of macrophages upon Salmonella enterica serovar Typhimurium (S. Typhimurium) infections. Importantly, our results suggest that S. Typhimurium abrogates glycolysis and its modulators such as insulin-signaling to impair macrophage defense. Mechanistically, glycolysis facilitates glycolytic enzyme aldolase A mediated v-ATPase assembly and the acidification of phagosomes which is critical for lysosomal degradation. Thus, impairment in the glycolytic machinery eventually leads to decreased bacterial clearance and antigen presentation in murine macrophages (BMDM). Collectively, our results highlight a vital molecular link between metabolic adaptation and phagosome maturation in macrophages, which is targeted by S. Typhimurium to evade cell-autonomous defense.Saray GutiérrezJulia FischerRaja GanesanNina Judith HosGökhan CildirMartina WolkeAlberto PessiaPeter FrommoltVincenzo DesiderioVidya VelagapudiNirmal RobinsonPublic Library of Science (PLoS)articleImmunologic diseases. AllergyRC581-607Biology (General)QH301-705.5ENPLoS Pathogens, Vol 17, Iss 9, p e1009943 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Immunologic diseases. Allergy RC581-607 Biology (General) QH301-705.5 |
spellingShingle |
Immunologic diseases. Allergy RC581-607 Biology (General) QH301-705.5 Saray Gutiérrez Julia Fischer Raja Ganesan Nina Judith Hos Gökhan Cildir Martina Wolke Alberto Pessia Peter Frommolt Vincenzo Desiderio Vidya Velagapudi Nirmal Robinson Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense. |
description |
Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, pathogens also counteract these metabolic changes for their own survival in the host. Despite this dynamic interplay in host-pathogen interactions, the role of immunometabolism in the context of intracellular bacterial infections is still unclear. Here, employing unbiased metabolomic and transcriptomic approaches, we investigated the role of metabolic adaptations of macrophages upon Salmonella enterica serovar Typhimurium (S. Typhimurium) infections. Importantly, our results suggest that S. Typhimurium abrogates glycolysis and its modulators such as insulin-signaling to impair macrophage defense. Mechanistically, glycolysis facilitates glycolytic enzyme aldolase A mediated v-ATPase assembly and the acidification of phagosomes which is critical for lysosomal degradation. Thus, impairment in the glycolytic machinery eventually leads to decreased bacterial clearance and antigen presentation in murine macrophages (BMDM). Collectively, our results highlight a vital molecular link between metabolic adaptation and phagosome maturation in macrophages, which is targeted by S. Typhimurium to evade cell-autonomous defense. |
format |
article |
author |
Saray Gutiérrez Julia Fischer Raja Ganesan Nina Judith Hos Gökhan Cildir Martina Wolke Alberto Pessia Peter Frommolt Vincenzo Desiderio Vidya Velagapudi Nirmal Robinson |
author_facet |
Saray Gutiérrez Julia Fischer Raja Ganesan Nina Judith Hos Gökhan Cildir Martina Wolke Alberto Pessia Peter Frommolt Vincenzo Desiderio Vidya Velagapudi Nirmal Robinson |
author_sort |
Saray Gutiérrez |
title |
Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense. |
title_short |
Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense. |
title_full |
Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense. |
title_fullStr |
Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense. |
title_full_unstemmed |
Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense. |
title_sort |
salmonella typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/b990dc2fb1bd4d26bb009ef804bbfd30 |
work_keys_str_mv |
AT saraygutierrez salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense AT juliafischer salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense AT rajaganesan salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense AT ninajudithhos salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense AT gokhancildir salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense AT martinawolke salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense AT albertopessia salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense AT peterfrommolt salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense AT vincenzodesiderio salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense AT vidyavelagapudi salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense AT nirmalrobinson salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense |
_version_ |
1718375745511751680 |