Credit Card Fraud Detection with Autoencoder and Probabilistic Random Forest
This paper proposes a method, called autoencoder with probabilistic random forest (AE-PRF), for detecting credit card frauds. The proposed AE-PRF method first utilizes the autoencoder to extract features of low-dimensionality from credit card transaction data features of high-dimensionality. It then...
Guardado en:
Autores principales: | Tzu-Hsuan Lin, Jehn-Ruey Jiang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b9a662d924844c6490938fa55e24cbf8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine Learning Based on Resampling Approaches and Deep Reinforcement Learning for Credit Card Fraud Detection Systems
por: Tran Khanh Dang, et al.
Publicado: (2021) -
Debit and Credit Cards: Money Velocity Risks
por: Hari Setia Putra, et al.
Publicado: (2021) -
Infracciones penales relacionadas con instrumentos mercantiles de crédito y débito : el peligro del dinero de plástico para empresas y usuarios /
por: Ferro Veiga, José Manuel
Publicado: (2013) -
Personality Type Effects on Perceptions of Online Credit Card Payment Services
por: Walczak,Steven, et al.
Publicado: (2016) -
Enhanced credit card fraud detection based on attention mechanism and LSTM deep model
por: Ibtissam Benchaji, et al.
Publicado: (2021)