Computational learning of features for automated colonic polyp classification
Abstract Shape, texture, and color are critical features for assessing the degree of dysplasia in colonic polyps. A comprehensive analysis of these features is presented in this paper. Shape features are extracted using generic Fourier descriptor. The nonsubsampled contourlet transform is used as te...
Guardado en:
Autores principales: | Kangkana Bora, M. K. Bhuyan, Kunio Kasugai, Saurav Mallik, Zhongming Zhao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b9ba95f3c47249c38cb8b7f3f0d80e71 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Detecting methylation signatures in neurodegenerative disease by density-based clustering of applications with reducing noise
por: Saurav Mallik, et al.
Publicado: (2020) -
Prognostic role and biologic features of Musashi-2 expression in colon polyps and during colorectal cancer progression.
por: Leonid Kharin, et al.
Publicado: (2021) -
Extraction of Key-Frames From Endoscopic Videos by Using Depth Information
por: Pradipta Sasmal, et al.
Publicado: (2021) -
miRNA expression in colon polyps provides evidence for a multihit model of colon cancer.
por: Ann L Oberg, et al.
Publicado: (2011) -
Colonoscopy polyp detection and classification: Dataset creation and comparative evaluations.
por: Kaidong Li, et al.
Publicado: (2021)