Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip

A modified Taylor model, hereafter referred to as the MTCS (Mechanical-Twinning-with-Coplanar-Slip)-model, is proposed in the present work to predict weak texture components in the shear bands of brass-type fcc metals with a twin–matrix lamellar (TML) structure. The MTCS-model considers two boundary...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shih-Chieh Hsiao, Sin-Ying Lin, Huang-Jun Chen, Ping-Yin Hsieh, Jui-Chao Kuo
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/b9c087159b5a4c8c931453f4f8309c15
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b9c087159b5a4c8c931453f4f8309c15
record_format dspace
spelling oai:doaj.org-article:b9c087159b5a4c8c931453f4f8309c152021-11-25T17:18:40ZRolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip10.3390/cryst111113512073-4352https://doaj.org/article/b9c087159b5a4c8c931453f4f8309c152021-11-01T00:00:00Zhttps://www.mdpi.com/2073-4352/11/11/1351https://doaj.org/toc/2073-4352A modified Taylor model, hereafter referred to as the MTCS (Mechanical-Twinning-with-Coplanar-Slip)-model, is proposed in the present work to predict weak texture components in the shear bands of brass-type fcc metals with a twin–matrix lamellar (TML) structure. The MTCS-model considers two boundary conditions (i.e., twinning does not occur in previously twinned areas and coplanar slip occurs in the TML region) to simulate the rolling texture of Cu–30%Zn. In the first approximation, texture simulation using the MTCS-model revealed brass-type textures, including Y{1 1 1} <1 1 2> and Z{1 1 1} <1 1 0> components, which correspond to the observed experimental textures. Single orientations of C<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo> </mo><mn>1</mn><mo> </mo><mn>2</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="true">¯</mo></mover><mo> </mo><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="true">¯</mo></mover><mo> </mo><mn>1</mn></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> and S’<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo> </mo><mn>2</mn><mo> </mo><mn>3</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mover accent="true"><mn>4</mn><mo>¯</mo></mover><mo> </mo><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mo> </mo><mn>2</mn></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> were applied to the MTCS-model to understand the evolution of Y and Z components. For the Y orientation, the C orientation rotates toward T(5 5 2)[1 1 5] by twinning after 30% reduction and then toward Y(1 1 1)[1 1 2] by coplanar slip after over 30% reduction. For the Z orientation, the S’ orientation rotates toward T’<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>3</mn><mo> </mo><mn>2</mn><mo> </mo><mn>1</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mn>2</mn><mo> </mo><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="true">¯</mo></mover><mo> </mo><mover accent="true"><mn>4</mn><mo>¯</mo></mover></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> by twinning after 30% reduction and then toward Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo> </mo><mn>1</mn><mo> </mo><mn>1</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mn>1</mn><mo> </mo><mn>0</mn><mo> </mo><mover accent="true"><mn>1</mn><mo>¯</mo></mover></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> by coplanar slip after over 30% reduction.Shih-Chieh HsiaoSin-Ying LinHuang-Jun ChenPing-Yin HsiehJui-Chao KuoMDPI AGarticlebrass-type shear bandtwin–matrix lamellaecoplanar slipTaylor modelCu–Zn alloycold-rolling textureCrystallographyQD901-999ENCrystals, Vol 11, Iss 1351, p 1351 (2021)
institution DOAJ
collection DOAJ
language EN
topic brass-type shear band
twin–matrix lamellae
coplanar slip
Taylor model
Cu–Zn alloy
cold-rolling texture
Crystallography
QD901-999
spellingShingle brass-type shear band
twin–matrix lamellae
coplanar slip
Taylor model
Cu–Zn alloy
cold-rolling texture
Crystallography
QD901-999
Shih-Chieh Hsiao
Sin-Ying Lin
Huang-Jun Chen
Ping-Yin Hsieh
Jui-Chao Kuo
Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip
description A modified Taylor model, hereafter referred to as the MTCS (Mechanical-Twinning-with-Coplanar-Slip)-model, is proposed in the present work to predict weak texture components in the shear bands of brass-type fcc metals with a twin–matrix lamellar (TML) structure. The MTCS-model considers two boundary conditions (i.e., twinning does not occur in previously twinned areas and coplanar slip occurs in the TML region) to simulate the rolling texture of Cu–30%Zn. In the first approximation, texture simulation using the MTCS-model revealed brass-type textures, including Y{1 1 1} <1 1 2> and Z{1 1 1} <1 1 0> components, which correspond to the observed experimental textures. Single orientations of C<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo> </mo><mn>1</mn><mo> </mo><mn>2</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="true">¯</mo></mover><mo> </mo><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="true">¯</mo></mover><mo> </mo><mn>1</mn></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> and S’<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo> </mo><mn>2</mn><mo> </mo><mn>3</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mover accent="true"><mn>4</mn><mo>¯</mo></mover><mo> </mo><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mo> </mo><mn>2</mn></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> were applied to the MTCS-model to understand the evolution of Y and Z components. For the Y orientation, the C orientation rotates toward T(5 5 2)[1 1 5] by twinning after 30% reduction and then toward Y(1 1 1)[1 1 2] by coplanar slip after over 30% reduction. For the Z orientation, the S’ orientation rotates toward T’<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>3</mn><mo> </mo><mn>2</mn><mo> </mo><mn>1</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mn>2</mn><mo> </mo><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="true">¯</mo></mover><mo> </mo><mover accent="true"><mn>4</mn><mo>¯</mo></mover></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> by twinning after 30% reduction and then toward Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo> </mo><mn>1</mn><mo> </mo><mn>1</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mn>1</mn><mo> </mo><mn>0</mn><mo> </mo><mover accent="true"><mn>1</mn><mo>¯</mo></mover></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> by coplanar slip after over 30% reduction.
format article
author Shih-Chieh Hsiao
Sin-Ying Lin
Huang-Jun Chen
Ping-Yin Hsieh
Jui-Chao Kuo
author_facet Shih-Chieh Hsiao
Sin-Ying Lin
Huang-Jun Chen
Ping-Yin Hsieh
Jui-Chao Kuo
author_sort Shih-Chieh Hsiao
title Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip
title_short Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip
title_full Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip
title_fullStr Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip
title_full_unstemmed Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip
title_sort rolling texture of cu–30%zn alloy using taylor model based on twinning and coplanar slip
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/b9c087159b5a4c8c931453f4f8309c15
work_keys_str_mv AT shihchiehhsiao rollingtextureofcu30znalloyusingtaylormodelbasedontwinningandcoplanarslip
AT sinyinglin rollingtextureofcu30znalloyusingtaylormodelbasedontwinningandcoplanarslip
AT huangjunchen rollingtextureofcu30znalloyusingtaylormodelbasedontwinningandcoplanarslip
AT pingyinhsieh rollingtextureofcu30znalloyusingtaylormodelbasedontwinningandcoplanarslip
AT juichaokuo rollingtextureofcu30znalloyusingtaylormodelbasedontwinningandcoplanarslip
_version_ 1718412554807541760