Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip
A modified Taylor model, hereafter referred to as the MTCS (Mechanical-Twinning-with-Coplanar-Slip)-model, is proposed in the present work to predict weak texture components in the shear bands of brass-type fcc metals with a twin–matrix lamellar (TML) structure. The MTCS-model considers two boundary...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b9c087159b5a4c8c931453f4f8309c15 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b9c087159b5a4c8c931453f4f8309c15 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b9c087159b5a4c8c931453f4f8309c152021-11-25T17:18:40ZRolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip10.3390/cryst111113512073-4352https://doaj.org/article/b9c087159b5a4c8c931453f4f8309c152021-11-01T00:00:00Zhttps://www.mdpi.com/2073-4352/11/11/1351https://doaj.org/toc/2073-4352A modified Taylor model, hereafter referred to as the MTCS (Mechanical-Twinning-with-Coplanar-Slip)-model, is proposed in the present work to predict weak texture components in the shear bands of brass-type fcc metals with a twin–matrix lamellar (TML) structure. The MTCS-model considers two boundary conditions (i.e., twinning does not occur in previously twinned areas and coplanar slip occurs in the TML region) to simulate the rolling texture of Cu–30%Zn. In the first approximation, texture simulation using the MTCS-model revealed brass-type textures, including Y{1 1 1} <1 1 2> and Z{1 1 1} <1 1 0> components, which correspond to the observed experimental textures. Single orientations of C<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo> </mo><mn>1</mn><mo> </mo><mn>2</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="true">¯</mo></mover><mo> </mo><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="true">¯</mo></mover><mo> </mo><mn>1</mn></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> and S’<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo> </mo><mn>2</mn><mo> </mo><mn>3</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mover accent="true"><mn>4</mn><mo>¯</mo></mover><mo> </mo><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mo> </mo><mn>2</mn></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> were applied to the MTCS-model to understand the evolution of Y and Z components. For the Y orientation, the C orientation rotates toward T(5 5 2)[1 1 5] by twinning after 30% reduction and then toward Y(1 1 1)[1 1 2] by coplanar slip after over 30% reduction. For the Z orientation, the S’ orientation rotates toward T’<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>3</mn><mo> </mo><mn>2</mn><mo> </mo><mn>1</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mn>2</mn><mo> </mo><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="true">¯</mo></mover><mo> </mo><mover accent="true"><mn>4</mn><mo>¯</mo></mover></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> by twinning after 30% reduction and then toward Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo> </mo><mn>1</mn><mo> </mo><mn>1</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mn>1</mn><mo> </mo><mn>0</mn><mo> </mo><mover accent="true"><mn>1</mn><mo>¯</mo></mover></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> by coplanar slip after over 30% reduction.Shih-Chieh HsiaoSin-Ying LinHuang-Jun ChenPing-Yin HsiehJui-Chao KuoMDPI AGarticlebrass-type shear bandtwin–matrix lamellaecoplanar slipTaylor modelCu–Zn alloycold-rolling textureCrystallographyQD901-999ENCrystals, Vol 11, Iss 1351, p 1351 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
brass-type shear band twin–matrix lamellae coplanar slip Taylor model Cu–Zn alloy cold-rolling texture Crystallography QD901-999 |
spellingShingle |
brass-type shear band twin–matrix lamellae coplanar slip Taylor model Cu–Zn alloy cold-rolling texture Crystallography QD901-999 Shih-Chieh Hsiao Sin-Ying Lin Huang-Jun Chen Ping-Yin Hsieh Jui-Chao Kuo Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip |
description |
A modified Taylor model, hereafter referred to as the MTCS (Mechanical-Twinning-with-Coplanar-Slip)-model, is proposed in the present work to predict weak texture components in the shear bands of brass-type fcc metals with a twin–matrix lamellar (TML) structure. The MTCS-model considers two boundary conditions (i.e., twinning does not occur in previously twinned areas and coplanar slip occurs in the TML region) to simulate the rolling texture of Cu–30%Zn. In the first approximation, texture simulation using the MTCS-model revealed brass-type textures, including Y{1 1 1} <1 1 2> and Z{1 1 1} <1 1 0> components, which correspond to the observed experimental textures. Single orientations of C<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo> </mo><mn>1</mn><mo> </mo><mn>2</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="true">¯</mo></mover><mo> </mo><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="true">¯</mo></mover><mo> </mo><mn>1</mn></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> and S’<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo> </mo><mn>2</mn><mo> </mo><mn>3</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mover accent="true"><mn>4</mn><mo>¯</mo></mover><mo> </mo><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mo> </mo><mn>2</mn></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> were applied to the MTCS-model to understand the evolution of Y and Z components. For the Y orientation, the C orientation rotates toward T(5 5 2)[1 1 5] by twinning after 30% reduction and then toward Y(1 1 1)[1 1 2] by coplanar slip after over 30% reduction. For the Z orientation, the S’ orientation rotates toward T’<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>3</mn><mo> </mo><mn>2</mn><mo> </mo><mn>1</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mn>2</mn><mo> </mo><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="true">¯</mo></mover><mo> </mo><mover accent="true"><mn>4</mn><mo>¯</mo></mover></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> by twinning after 30% reduction and then toward Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo> </mo><mn>1</mn><mo> </mo><mn>1</mn></mrow><mo>)</mo></mrow><mrow><mo>[</mo><mrow><mn>1</mn><mo> </mo><mn>0</mn><mo> </mo><mover accent="true"><mn>1</mn><mo>¯</mo></mover></mrow><mo>]</mo></mrow></mrow></semantics></math></inline-formula> by coplanar slip after over 30% reduction. |
format |
article |
author |
Shih-Chieh Hsiao Sin-Ying Lin Huang-Jun Chen Ping-Yin Hsieh Jui-Chao Kuo |
author_facet |
Shih-Chieh Hsiao Sin-Ying Lin Huang-Jun Chen Ping-Yin Hsieh Jui-Chao Kuo |
author_sort |
Shih-Chieh Hsiao |
title |
Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip |
title_short |
Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip |
title_full |
Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip |
title_fullStr |
Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip |
title_full_unstemmed |
Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip |
title_sort |
rolling texture of cu–30%zn alloy using taylor model based on twinning and coplanar slip |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/b9c087159b5a4c8c931453f4f8309c15 |
work_keys_str_mv |
AT shihchiehhsiao rollingtextureofcu30znalloyusingtaylormodelbasedontwinningandcoplanarslip AT sinyinglin rollingtextureofcu30znalloyusingtaylormodelbasedontwinningandcoplanarslip AT huangjunchen rollingtextureofcu30znalloyusingtaylormodelbasedontwinningandcoplanarslip AT pingyinhsieh rollingtextureofcu30znalloyusingtaylormodelbasedontwinningandcoplanarslip AT juichaokuo rollingtextureofcu30znalloyusingtaylormodelbasedontwinningandcoplanarslip |
_version_ |
1718412554807541760 |