Quadrotor Autonomous Navigation in Semi-Known Environments Based on Deep Reinforcement Learning
In the application scenarios of quadrotors, it is expected that only part of the obstacles can be identified and located in advance. In order to make quadrotors fly safely in this situation, we present a deep reinforcement learning-based framework to realize autonomous navigation in semi-known envir...
Guardado en:
Autores principales: | Jiajun Ou, Xiao Guo, Wenjie Lou, Ming Zhu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b9c4b23f47684bb7b1daa3caf6ff2575 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Multi-Objective Coverage Path Planning Algorithm for UAVs to Cover Spatially Distributed Regions in Urban Environments
por: Abdul Majeed, et al.
Publicado: (2021) -
Simulation and experimental approach for optimal path planning of UAV using A* and MEA* algorithms
por: Esakki Balasubramanian, et al.
Publicado: (2021) -
A Range-Based Algorithm for Autonomous Navigation of an Aerial Drone to Approach and Follow a Herd of Cattle
por: Manaram Gnanasekera, et al.
Publicado: (2021) -
A Real-Time Collision Avoidance Strategy in Dynamic Airspace Based on Dynamic Artificial Potential Field Algorithm
por: Yanshuang Du, et al.
Publicado: (2019) -
Drone-Based Autonomous Motion Planning System for Outdoor Environments under Object Detection Uncertainty
por: Juan Sandino, et al.
Publicado: (2021)