Quadrotor Autonomous Navigation in Semi-Known Environments Based on Deep Reinforcement Learning
In the application scenarios of quadrotors, it is expected that only part of the obstacles can be identified and located in advance. In order to make quadrotors fly safely in this situation, we present a deep reinforcement learning-based framework to realize autonomous navigation in semi-known envir...
Enregistré dans:
Auteurs principaux: | Jiajun Ou, Xiao Guo, Wenjie Lou, Ming Zhu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b9c4b23f47684bb7b1daa3caf6ff2575 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Multi-Objective Coverage Path Planning Algorithm for UAVs to Cover Spatially Distributed Regions in Urban Environments
par: Abdul Majeed, et autres
Publié: (2021) -
Simulation and experimental approach for optimal path planning of UAV using A* and MEA* algorithms
par: Esakki Balasubramanian, et autres
Publié: (2021) -
A Range-Based Algorithm for Autonomous Navigation of an Aerial Drone to Approach and Follow a Herd of Cattle
par: Manaram Gnanasekera, et autres
Publié: (2021) -
A Real-Time Collision Avoidance Strategy in Dynamic Airspace Based on Dynamic Artificial Potential Field Algorithm
par: Yanshuang Du, et autres
Publié: (2019) -
Drone-Based Autonomous Motion Planning System for Outdoor Environments under Object Detection Uncertainty
par: Juan Sandino, et autres
Publié: (2021)