Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer
ABSTRACT Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthet...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2015
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b9ca3b153caf48bea5b2697388ee788d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b9ca3b153caf48bea5b2697388ee788d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b9ca3b153caf48bea5b2697388ee788d2021-11-15T15:41:31ZSynthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer10.1128/mBio.01032-152150-7511https://doaj.org/article/b9ca3b153caf48bea5b2697388ee788d2015-10-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.01032-15https://doaj.org/toc/2150-7511ABSTRACT Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthetic 2-alkynoic fatty acids were identified as a novel class of conjugation inhibitors. Their chemical properties were investigated by using the prototype 2-hexadecynoic acid and its derivatives. Essential features of effective inhibitors were the carboxylic group, an optimal long aliphatic chain of 16 carbon atoms, and one unsaturation. Chemical modification of these groups led to inactive or less-active derivatives. Conjugation inhibitors were found to act on the donor cell, affecting a wide number of pathogenic bacterial hosts, including Escherichia, Salmonella, Pseudomonas, and Acinetobacter spp. Conjugation inhibitors were active in inhibiting transfer of IncF, IncW, and IncH plasmids, moderately active against IncI, IncL/M, and IncX plasmids, and inactive against IncP and IncN plasmids. Importantly, the use of 2-hexadecynoic acid avoided the spread of a derepressed IncF plasmid into a recipient population, demonstrating the feasibility of abolishing the dissemination of antimicrobial resistances by blocking bacterial conjugation. IMPORTANCE Diseases caused by multidrug-resistant bacteria are taking an important toll with respect to human morbidity and mortality. The most relevant antibiotic resistance genes come to human pathogens carried by plasmids, mainly using conjugation as a transmission mechanism. Here, we identified and characterized a series of compounds that were active against several plasmid groups of clinical relevance, in a wide variety of bacterial hosts. These inhibitors might be used for fighting antibiotic-resistance dissemination by inhibiting conjugation. Potential inhibitors could be used in specific settings (e.g., farm, fish factory, or even clinical settings) to investigate their effect in the eradication of undesired resistances.María GetinoDavid J. Sanabria-RíosRaúl Fernández-LópezJavier Campos-GómezJosé M. Sánchez-LópezAntonio FernándezNéstor M. CarballeiraFernando de la CruzAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 6, Iss 5 (2015) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Microbiology QR1-502 |
spellingShingle |
Microbiology QR1-502 María Getino David J. Sanabria-Ríos Raúl Fernández-López Javier Campos-Gómez José M. Sánchez-López Antonio Fernández Néstor M. Carballeira Fernando de la Cruz Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer |
description |
ABSTRACT Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthetic 2-alkynoic fatty acids were identified as a novel class of conjugation inhibitors. Their chemical properties were investigated by using the prototype 2-hexadecynoic acid and its derivatives. Essential features of effective inhibitors were the carboxylic group, an optimal long aliphatic chain of 16 carbon atoms, and one unsaturation. Chemical modification of these groups led to inactive or less-active derivatives. Conjugation inhibitors were found to act on the donor cell, affecting a wide number of pathogenic bacterial hosts, including Escherichia, Salmonella, Pseudomonas, and Acinetobacter spp. Conjugation inhibitors were active in inhibiting transfer of IncF, IncW, and IncH plasmids, moderately active against IncI, IncL/M, and IncX plasmids, and inactive against IncP and IncN plasmids. Importantly, the use of 2-hexadecynoic acid avoided the spread of a derepressed IncF plasmid into a recipient population, demonstrating the feasibility of abolishing the dissemination of antimicrobial resistances by blocking bacterial conjugation. IMPORTANCE Diseases caused by multidrug-resistant bacteria are taking an important toll with respect to human morbidity and mortality. The most relevant antibiotic resistance genes come to human pathogens carried by plasmids, mainly using conjugation as a transmission mechanism. Here, we identified and characterized a series of compounds that were active against several plasmid groups of clinical relevance, in a wide variety of bacterial hosts. These inhibitors might be used for fighting antibiotic-resistance dissemination by inhibiting conjugation. Potential inhibitors could be used in specific settings (e.g., farm, fish factory, or even clinical settings) to investigate their effect in the eradication of undesired resistances. |
format |
article |
author |
María Getino David J. Sanabria-Ríos Raúl Fernández-López Javier Campos-Gómez José M. Sánchez-López Antonio Fernández Néstor M. Carballeira Fernando de la Cruz |
author_facet |
María Getino David J. Sanabria-Ríos Raúl Fernández-López Javier Campos-Gómez José M. Sánchez-López Antonio Fernández Néstor M. Carballeira Fernando de la Cruz |
author_sort |
María Getino |
title |
Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer |
title_short |
Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer |
title_full |
Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer |
title_fullStr |
Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer |
title_full_unstemmed |
Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer |
title_sort |
synthetic fatty acids prevent plasmid-mediated horizontal gene transfer |
publisher |
American Society for Microbiology |
publishDate |
2015 |
url |
https://doaj.org/article/b9ca3b153caf48bea5b2697388ee788d |
work_keys_str_mv |
AT mariagetino syntheticfattyacidspreventplasmidmediatedhorizontalgenetransfer AT davidjsanabriarios syntheticfattyacidspreventplasmidmediatedhorizontalgenetransfer AT raulfernandezlopez syntheticfattyacidspreventplasmidmediatedhorizontalgenetransfer AT javiercamposgomez syntheticfattyacidspreventplasmidmediatedhorizontalgenetransfer AT josemsanchezlopez syntheticfattyacidspreventplasmidmediatedhorizontalgenetransfer AT antoniofernandez syntheticfattyacidspreventplasmidmediatedhorizontalgenetransfer AT nestormcarballeira syntheticfattyacidspreventplasmidmediatedhorizontalgenetransfer AT fernandodelacruz syntheticfattyacidspreventplasmidmediatedhorizontalgenetransfer |
_version_ |
1718427726022443008 |