Tunable High-Pressure Field Operating on a Cationic Biphenyl Derivative Intercalated in Clay Minerals
Abstract We propose a methodology for applying a pseudo uniaxial pressure to an organic molecule under ordinary temperature and pressure, namely by intercalation into smectites. The pseudo pressure on a biphenyl derivative (BP) was estimated from the averaged dihedral angle around the central bond o...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b9cae8c5805f4cfdac0674dd8937d94d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b9cae8c5805f4cfdac0674dd8937d94d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b9cae8c5805f4cfdac0674dd8937d94d2021-12-02T11:52:31ZTunable High-Pressure Field Operating on a Cationic Biphenyl Derivative Intercalated in Clay Minerals10.1038/s41598-017-08064-02045-2322https://doaj.org/article/b9cae8c5805f4cfdac0674dd8937d94d2017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-08064-0https://doaj.org/toc/2045-2322Abstract We propose a methodology for applying a pseudo uniaxial pressure to an organic molecule under ordinary temperature and pressure, namely by intercalation into smectites. The pseudo pressure on a biphenyl derivative (BP) was estimated from the averaged dihedral angle around the central bond of BP. In a high hydrostatic pressure field, biphenyl takes a planar conformation. In the interlayer space of synthetic saponite (SSA), the averaged dihedral angle of BP at a loading level of 27% versus the cation exchange capacity was ~26.3°, which indicates that the pseudo pressure applied to BP in the SSA interlayer space corresponds to 0.99 GPa. The high pseudo-pressure field in the interlayer space of SSA was also confirmed by absorption measurements. The dihedral angle around the central bond of the biphenyl moiety decreased to enhance the planarity of the molecule, mainly in response to the electrostatic force that operates between the negatively charged SSA layer and the interlayer cation. The pseudo pressure operating on BP in the smectite interlayer space could be controlled by varying the smectite layer charge density and/or the BP loading level. By using this methodology, controllable pseudo high-pressure properties of organic molecules can be obtained at ordinary temperatures and pressures.Makoto TominagaYukihiro NishiokaSeiji TaniYasutaka SuzukiJun KawamataNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-6 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Makoto Tominaga Yukihiro Nishioka Seiji Tani Yasutaka Suzuki Jun Kawamata Tunable High-Pressure Field Operating on a Cationic Biphenyl Derivative Intercalated in Clay Minerals |
description |
Abstract We propose a methodology for applying a pseudo uniaxial pressure to an organic molecule under ordinary temperature and pressure, namely by intercalation into smectites. The pseudo pressure on a biphenyl derivative (BP) was estimated from the averaged dihedral angle around the central bond of BP. In a high hydrostatic pressure field, biphenyl takes a planar conformation. In the interlayer space of synthetic saponite (SSA), the averaged dihedral angle of BP at a loading level of 27% versus the cation exchange capacity was ~26.3°, which indicates that the pseudo pressure applied to BP in the SSA interlayer space corresponds to 0.99 GPa. The high pseudo-pressure field in the interlayer space of SSA was also confirmed by absorption measurements. The dihedral angle around the central bond of the biphenyl moiety decreased to enhance the planarity of the molecule, mainly in response to the electrostatic force that operates between the negatively charged SSA layer and the interlayer cation. The pseudo pressure operating on BP in the smectite interlayer space could be controlled by varying the smectite layer charge density and/or the BP loading level. By using this methodology, controllable pseudo high-pressure properties of organic molecules can be obtained at ordinary temperatures and pressures. |
format |
article |
author |
Makoto Tominaga Yukihiro Nishioka Seiji Tani Yasutaka Suzuki Jun Kawamata |
author_facet |
Makoto Tominaga Yukihiro Nishioka Seiji Tani Yasutaka Suzuki Jun Kawamata |
author_sort |
Makoto Tominaga |
title |
Tunable High-Pressure Field Operating on a Cationic Biphenyl Derivative Intercalated in Clay Minerals |
title_short |
Tunable High-Pressure Field Operating on a Cationic Biphenyl Derivative Intercalated in Clay Minerals |
title_full |
Tunable High-Pressure Field Operating on a Cationic Biphenyl Derivative Intercalated in Clay Minerals |
title_fullStr |
Tunable High-Pressure Field Operating on a Cationic Biphenyl Derivative Intercalated in Clay Minerals |
title_full_unstemmed |
Tunable High-Pressure Field Operating on a Cationic Biphenyl Derivative Intercalated in Clay Minerals |
title_sort |
tunable high-pressure field operating on a cationic biphenyl derivative intercalated in clay minerals |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/b9cae8c5805f4cfdac0674dd8937d94d |
work_keys_str_mv |
AT makototominaga tunablehighpressurefieldoperatingonacationicbiphenylderivativeintercalatedinclayminerals AT yukihironishioka tunablehighpressurefieldoperatingonacationicbiphenylderivativeintercalatedinclayminerals AT seijitani tunablehighpressurefieldoperatingonacationicbiphenylderivativeintercalatedinclayminerals AT yasutakasuzuki tunablehighpressurefieldoperatingonacationicbiphenylderivativeintercalatedinclayminerals AT junkawamata tunablehighpressurefieldoperatingonacationicbiphenylderivativeintercalatedinclayminerals |
_version_ |
1718395007591776256 |