Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning

Computational modelling of chemical systems requires a balance between accuracy and computational cost. Here the authors use transfer learning to develop a general purpose neural network potential that approaches quantum-chemical accuracy for reaction thermochemistry, isomerization, and drug-like mo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Justin S. Smith, Benjamin T. Nebgen, Roman Zubatyuk, Nicholas Lubbers, Christian Devereux, Kipton Barros, Sergei Tretiak, Olexandr Isayev, Adrian E. Roitberg
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/b9d6f6a078d94ad99b62149bfbdabce9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b9d6f6a078d94ad99b62149bfbdabce9
record_format dspace
spelling oai:doaj.org-article:b9d6f6a078d94ad99b62149bfbdabce92021-12-02T16:58:01ZApproaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning10.1038/s41467-019-10827-42041-1723https://doaj.org/article/b9d6f6a078d94ad99b62149bfbdabce92019-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-10827-4https://doaj.org/toc/2041-1723Computational modelling of chemical systems requires a balance between accuracy and computational cost. Here the authors use transfer learning to develop a general purpose neural network potential that approaches quantum-chemical accuracy for reaction thermochemistry, isomerization, and drug-like molecular torsions.Justin S. SmithBenjamin T. NebgenRoman ZubatyukNicholas LubbersChristian DevereuxKipton BarrosSergei TretiakOlexandr IsayevAdrian E. RoitbergNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-8 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Justin S. Smith
Benjamin T. Nebgen
Roman Zubatyuk
Nicholas Lubbers
Christian Devereux
Kipton Barros
Sergei Tretiak
Olexandr Isayev
Adrian E. Roitberg
Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
description Computational modelling of chemical systems requires a balance between accuracy and computational cost. Here the authors use transfer learning to develop a general purpose neural network potential that approaches quantum-chemical accuracy for reaction thermochemistry, isomerization, and drug-like molecular torsions.
format article
author Justin S. Smith
Benjamin T. Nebgen
Roman Zubatyuk
Nicholas Lubbers
Christian Devereux
Kipton Barros
Sergei Tretiak
Olexandr Isayev
Adrian E. Roitberg
author_facet Justin S. Smith
Benjamin T. Nebgen
Roman Zubatyuk
Nicholas Lubbers
Christian Devereux
Kipton Barros
Sergei Tretiak
Olexandr Isayev
Adrian E. Roitberg
author_sort Justin S. Smith
title Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
title_short Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
title_full Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
title_fullStr Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
title_full_unstemmed Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
title_sort approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/b9d6f6a078d94ad99b62149bfbdabce9
work_keys_str_mv AT justinssmith approachingcoupledclusteraccuracywithageneralpurposeneuralnetworkpotentialthroughtransferlearning
AT benjamintnebgen approachingcoupledclusteraccuracywithageneralpurposeneuralnetworkpotentialthroughtransferlearning
AT romanzubatyuk approachingcoupledclusteraccuracywithageneralpurposeneuralnetworkpotentialthroughtransferlearning
AT nicholaslubbers approachingcoupledclusteraccuracywithageneralpurposeneuralnetworkpotentialthroughtransferlearning
AT christiandevereux approachingcoupledclusteraccuracywithageneralpurposeneuralnetworkpotentialthroughtransferlearning
AT kiptonbarros approachingcoupledclusteraccuracywithageneralpurposeneuralnetworkpotentialthroughtransferlearning
AT sergeitretiak approachingcoupledclusteraccuracywithageneralpurposeneuralnetworkpotentialthroughtransferlearning
AT olexandrisayev approachingcoupledclusteraccuracywithageneralpurposeneuralnetworkpotentialthroughtransferlearning
AT adrianeroitberg approachingcoupledclusteraccuracywithageneralpurposeneuralnetworkpotentialthroughtransferlearning
_version_ 1718382411349229568