Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
Computational modelling of chemical systems requires a balance between accuracy and computational cost. Here the authors use transfer learning to develop a general purpose neural network potential that approaches quantum-chemical accuracy for reaction thermochemistry, isomerization, and drug-like mo...
Guardado en:
Autores principales: | Justin S. Smith, Benjamin T. Nebgen, Roman Zubatyuk, Nicholas Lubbers, Christian Devereux, Kipton Barros, Sergei Tretiak, Olexandr Isayev, Adrian E. Roitberg |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b9d6f6a078d94ad99b62149bfbdabce9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Teaching a neural network to attach and detach electrons from molecules
por: Roman Zubatyuk, et al.
Publicado: (2021) -
Automated discovery of a robust interatomic potential for aluminum
por: Justin S. Smith, et al.
Publicado: (2021) -
Artificial intelligence-enhanced quantum chemical method with broad applicability
por: Peikun Zheng, et al.
Publicado: (2021) -
Coherent exciton-vibrational dynamics and energy transfer in conjugated organics
por: Tammie R. Nelson, et al.
Publicado: (2018) -
Competitive purposefulness
por: O. V. Mikhailov
Publicado: (2019)