Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning

Computational modelling of chemical systems requires a balance between accuracy and computational cost. Here the authors use transfer learning to develop a general purpose neural network potential that approaches quantum-chemical accuracy for reaction thermochemistry, isomerization, and drug-like mo...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Justin S. Smith, Benjamin T. Nebgen, Roman Zubatyuk, Nicholas Lubbers, Christian Devereux, Kipton Barros, Sergei Tretiak, Olexandr Isayev, Adrian E. Roitberg
Format: article
Langue:EN
Publié: Nature Portfolio 2019
Sujets:
Q
Accès en ligne:https://doaj.org/article/b9d6f6a078d94ad99b62149bfbdabce9
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!