A machine learning framework for predicting drug–drug interactions
Abstract Understanding drug–drug interactions is an essential step to reduce the risk of adverse drug events before clinical drug co-prescription. Existing methods, commonly integrating heterogeneous data to increase model performance, often suffer from a high model complexity, As such, how to eluci...
Guardado en:
Autores principales: | Suyu Mei, Kun Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b9d896a473c24f599f2340990a20b4ba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning workflow to enhance predictions of Adverse Drug Reactions (ADRs) through drug-gene interactions: application to drugs for cutaneous diseases
por: Kalpana Raja, et al.
Publicado: (2017) -
Predicting neurological Adverse Drug Reactions based on biological, chemical and phenotypic properties of drugs using machine learning models
por: Salma Jamal, et al.
Publicado: (2017) -
Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs
por: Henry Gerdes, et al.
Publicado: (2021) -
Machine Learning-Based Prediction of Drug-Drug Interactions for Histamine Antagonist Using Hybrid Chemical Features
por: Luong Huu Dang, et al.
Publicado: (2021) -
Prediction of cancer drugs by chemical-chemical interactions.
por: Jing Lu, et al.
Publicado: (2014)