Risk estimation of SARS-CoV-2 transmission from bluetooth low energy measurements
Abstract Digital contact tracing approaches based on Bluetooth low energy (BLE) have the potential to efficiently contain and delay outbreaks of infectious diseases such as the ongoing SARS-CoV-2 pandemic. In this work we propose a machine learning based approach to reliably detect subjects that hav...
Guardado en:
Autores principales: | Felix Sattler, Jackie Ma, Patrick Wagner, David Neumann, Markus Wenzel, Ralf Schäfer, Wojciech Samek, Klaus-Robert Müller, Thomas Wiegand |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b9e0aea758e242848b57b9e08fe2a1eb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Reopening businesses and risk of COVID-19 transmission
por: Ashley O’Donoghue, et al.
Publicado: (2021) -
Author Correction: Reopening businesses and risk of COVID-19 transmission
por: Ashley O’Donoghue, et al.
Publicado: (2021) -
Modeling the effect of exposure notification and non-pharmaceutical interventions on COVID-19 transmission in Washington state
por: Matthew Abueg, et al.
Publicado: (2021) -
Predicting Attack Surface Effects on Attack Vectors in an Open Congested Network Transmission Session by Machine Learning
por: Nahla Aljojo
Publicado: (2021) -
Physician requirements for adoption of telehealth following the SARS-CoV-2 pandemic
por: Michael Hodgkins, et al.
Publicado: (2021)