Generative adversarial network for glioblastoma ensures morphologic variations and improves diagnostic model for isocitrate dehydrogenase mutant type
Abstract Generative adversarial network (GAN) creates synthetic images to increase data quantity, but whether GAN ensures meaningful morphologic variations is still unknown. We investigated whether GAN-based synthetic images provide sufficient morphologic variations to improve molecular-based predic...
Guardado en:
Autores principales: | Ji Eun Park, Dain Eun, Ho Sung Kim, Da Hyun Lee, Ryoung Woo Jang, Namkug Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b9e0f4185fc740d6af0b446f7f57164e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Integrated pharmaco-proteogenomics defines two subgroups in isocitrate dehydrogenase wild-type glioblastoma with prognostic and therapeutic opportunities
por: Sejin Oh, et al.
Publicado: (2020) -
A Simple Preoperative Blood Count to Stratify Prognosis in Isocitrate Dehydrogenase-Wildtype Glioblastoma Patients Treated with Radiotherapy plus Concomitant and Adjuvant Temozolomide
por: Anne Clavreul, et al.
Publicado: (2021) -
Roles of metal ions in the selective inhibition of oncogenic variants of isocitrate dehydrogenase 1
por: Shuang Liu, et al.
Publicado: (2021) -
Biochemical Characterization of Recombinant Isocitrate Dehydrogenase and Its Putative Role in the Physiology of an Acidophilic Micrarchaeon
por: Dennis Winkler, et al.
Publicado: (2021) -
Realistic high-resolution lateral cephalometric radiography generated by progressive growing generative adversarial network and quality evaluations
por: Mingyu Kim, et al.
Publicado: (2021)