A system-oriented strategy to enhance electron production of Synechocystis sp. PCC6803 in bio-photovoltaic devices: experimental and modeling insights

Abstract Bio-photovoltaic devices (BPVs) harness photosynthetic organisms to produce bioelectricity in an eco-friendly way. However, their low energy efficiency is still a challenge. A comprehension of metabolic constraints can result in finding strategies for efficiency enhancement. This study pres...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hossein Firoozabadi, Mohammad Mahdi Mardanpour, Ehsan Motamedian
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b9e194e5d2454c519e9e126cbdafe44f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b9e194e5d2454c519e9e126cbdafe44f
record_format dspace
spelling oai:doaj.org-article:b9e194e5d2454c519e9e126cbdafe44f2021-12-02T17:34:40ZA system-oriented strategy to enhance electron production of Synechocystis sp. PCC6803 in bio-photovoltaic devices: experimental and modeling insights10.1038/s41598-021-91906-92045-2322https://doaj.org/article/b9e194e5d2454c519e9e126cbdafe44f2021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-91906-9https://doaj.org/toc/2045-2322Abstract Bio-photovoltaic devices (BPVs) harness photosynthetic organisms to produce bioelectricity in an eco-friendly way. However, their low energy efficiency is still a challenge. A comprehension of metabolic constraints can result in finding strategies for efficiency enhancement. This study presents a systemic approach based on metabolic modeling to design a regulatory defined medium, reducing the intracellular constraints in bioelectricity generation of Synechocystis sp. PCC6803 through the cellular metabolism alteration. The approach identified key reactions that played a critical role in improving electricity generation in Synechocystis sp. PCC6803 by comparing multiple optimal solutions of minimal and maximal NADH generation using two criteria. Regulatory compounds, which controlled the enzyme activity of the key reactions, were obtained from the BRENDA database. The selected compounds were subsequently added to the culture media, and their effect on bioelectricity generation was experimentally assessed. The power density curves for different culture media showed the BPV fed by Synechocystis sp. PCC6803 suspension in BG-11 supplemented with NH4Cl achieved the maximum power density of 148.27 mW m−2. This produced power density was more than 40.5-fold of what was obtained for the BPV fed with cyanobacterial suspension in BG-11. The effect of the activators on BPV performance was also evaluated by comparing their overpotential, maximum produced power density, and biofilm morphology under different conditions. These findings demonstrated the crucial role of cellular metabolism in improving bioelectricity generation in BPVs.Hossein FiroozabadiMohammad Mahdi MardanpourEhsan MotamedianNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Hossein Firoozabadi
Mohammad Mahdi Mardanpour
Ehsan Motamedian
A system-oriented strategy to enhance electron production of Synechocystis sp. PCC6803 in bio-photovoltaic devices: experimental and modeling insights
description Abstract Bio-photovoltaic devices (BPVs) harness photosynthetic organisms to produce bioelectricity in an eco-friendly way. However, their low energy efficiency is still a challenge. A comprehension of metabolic constraints can result in finding strategies for efficiency enhancement. This study presents a systemic approach based on metabolic modeling to design a regulatory defined medium, reducing the intracellular constraints in bioelectricity generation of Synechocystis sp. PCC6803 through the cellular metabolism alteration. The approach identified key reactions that played a critical role in improving electricity generation in Synechocystis sp. PCC6803 by comparing multiple optimal solutions of minimal and maximal NADH generation using two criteria. Regulatory compounds, which controlled the enzyme activity of the key reactions, were obtained from the BRENDA database. The selected compounds were subsequently added to the culture media, and their effect on bioelectricity generation was experimentally assessed. The power density curves for different culture media showed the BPV fed by Synechocystis sp. PCC6803 suspension in BG-11 supplemented with NH4Cl achieved the maximum power density of 148.27 mW m−2. This produced power density was more than 40.5-fold of what was obtained for the BPV fed with cyanobacterial suspension in BG-11. The effect of the activators on BPV performance was also evaluated by comparing their overpotential, maximum produced power density, and biofilm morphology under different conditions. These findings demonstrated the crucial role of cellular metabolism in improving bioelectricity generation in BPVs.
format article
author Hossein Firoozabadi
Mohammad Mahdi Mardanpour
Ehsan Motamedian
author_facet Hossein Firoozabadi
Mohammad Mahdi Mardanpour
Ehsan Motamedian
author_sort Hossein Firoozabadi
title A system-oriented strategy to enhance electron production of Synechocystis sp. PCC6803 in bio-photovoltaic devices: experimental and modeling insights
title_short A system-oriented strategy to enhance electron production of Synechocystis sp. PCC6803 in bio-photovoltaic devices: experimental and modeling insights
title_full A system-oriented strategy to enhance electron production of Synechocystis sp. PCC6803 in bio-photovoltaic devices: experimental and modeling insights
title_fullStr A system-oriented strategy to enhance electron production of Synechocystis sp. PCC6803 in bio-photovoltaic devices: experimental and modeling insights
title_full_unstemmed A system-oriented strategy to enhance electron production of Synechocystis sp. PCC6803 in bio-photovoltaic devices: experimental and modeling insights
title_sort system-oriented strategy to enhance electron production of synechocystis sp. pcc6803 in bio-photovoltaic devices: experimental and modeling insights
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/b9e194e5d2454c519e9e126cbdafe44f
work_keys_str_mv AT hosseinfiroozabadi asystemorientedstrategytoenhanceelectronproductionofsynechocystissppcc6803inbiophotovoltaicdevicesexperimentalandmodelinginsights
AT mohammadmahdimardanpour asystemorientedstrategytoenhanceelectronproductionofsynechocystissppcc6803inbiophotovoltaicdevicesexperimentalandmodelinginsights
AT ehsanmotamedian asystemorientedstrategytoenhanceelectronproductionofsynechocystissppcc6803inbiophotovoltaicdevicesexperimentalandmodelinginsights
AT hosseinfiroozabadi systemorientedstrategytoenhanceelectronproductionofsynechocystissppcc6803inbiophotovoltaicdevicesexperimentalandmodelinginsights
AT mohammadmahdimardanpour systemorientedstrategytoenhanceelectronproductionofsynechocystissppcc6803inbiophotovoltaicdevicesexperimentalandmodelinginsights
AT ehsanmotamedian systemorientedstrategytoenhanceelectronproductionofsynechocystissppcc6803inbiophotovoltaicdevicesexperimentalandmodelinginsights
_version_ 1718379962368524288