An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation

Recurrent spiking neural networks have garnered interest due to their energy efficiency; however, they suffer from lower accuracy compared to conventional neural networks. Here, the authors present an alternative neuron model and its efficient hardware implementation, demonstrating high classificati...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ahmed Shaban, Sai Sukruth Bezugam, Manan Suri
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/b9e65d38422b411399499f0831f7338c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b9e65d38422b411399499f0831f7338c
record_format dspace
spelling oai:doaj.org-article:b9e65d38422b411399499f0831f7338c2021-12-02T15:23:18ZAn adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation10.1038/s41467-021-24427-82041-1723https://doaj.org/article/b9e65d38422b411399499f0831f7338c2021-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-24427-8https://doaj.org/toc/2041-1723Recurrent spiking neural networks have garnered interest due to their energy efficiency; however, they suffer from lower accuracy compared to conventional neural networks. Here, the authors present an alternative neuron model and its efficient hardware implementation, demonstrating high classification accuracy across a range of datasets.Ahmed ShabanSai Sukruth BezugamManan SuriNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Ahmed Shaban
Sai Sukruth Bezugam
Manan Suri
An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation
description Recurrent spiking neural networks have garnered interest due to their energy efficiency; however, they suffer from lower accuracy compared to conventional neural networks. Here, the authors present an alternative neuron model and its efficient hardware implementation, demonstrating high classification accuracy across a range of datasets.
format article
author Ahmed Shaban
Sai Sukruth Bezugam
Manan Suri
author_facet Ahmed Shaban
Sai Sukruth Bezugam
Manan Suri
author_sort Ahmed Shaban
title An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation
title_short An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation
title_full An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation
title_fullStr An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation
title_full_unstemmed An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation
title_sort adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/b9e65d38422b411399499f0831f7338c
work_keys_str_mv AT ahmedshaban anadaptivethresholdneuronforrecurrentspikingneuralnetworkswithnanodevicehardwareimplementation
AT saisukruthbezugam anadaptivethresholdneuronforrecurrentspikingneuralnetworkswithnanodevicehardwareimplementation
AT manansuri anadaptivethresholdneuronforrecurrentspikingneuralnetworkswithnanodevicehardwareimplementation
AT ahmedshaban adaptivethresholdneuronforrecurrentspikingneuralnetworkswithnanodevicehardwareimplementation
AT saisukruthbezugam adaptivethresholdneuronforrecurrentspikingneuralnetworkswithnanodevicehardwareimplementation
AT manansuri adaptivethresholdneuronforrecurrentspikingneuralnetworkswithnanodevicehardwareimplementation
_version_ 1718387288671518720