An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation
Recurrent spiking neural networks have garnered interest due to their energy efficiency; however, they suffer from lower accuracy compared to conventional neural networks. Here, the authors present an alternative neuron model and its efficient hardware implementation, demonstrating high classificati...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b9e65d38422b411399499f0831f7338c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b9e65d38422b411399499f0831f7338c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b9e65d38422b411399499f0831f7338c2021-12-02T15:23:18ZAn adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation10.1038/s41467-021-24427-82041-1723https://doaj.org/article/b9e65d38422b411399499f0831f7338c2021-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-24427-8https://doaj.org/toc/2041-1723Recurrent spiking neural networks have garnered interest due to their energy efficiency; however, they suffer from lower accuracy compared to conventional neural networks. Here, the authors present an alternative neuron model and its efficient hardware implementation, demonstrating high classification accuracy across a range of datasets.Ahmed ShabanSai Sukruth BezugamManan SuriNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Ahmed Shaban Sai Sukruth Bezugam Manan Suri An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation |
description |
Recurrent spiking neural networks have garnered interest due to their energy efficiency; however, they suffer from lower accuracy compared to conventional neural networks. Here, the authors present an alternative neuron model and its efficient hardware implementation, demonstrating high classification accuracy across a range of datasets. |
format |
article |
author |
Ahmed Shaban Sai Sukruth Bezugam Manan Suri |
author_facet |
Ahmed Shaban Sai Sukruth Bezugam Manan Suri |
author_sort |
Ahmed Shaban |
title |
An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation |
title_short |
An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation |
title_full |
An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation |
title_fullStr |
An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation |
title_full_unstemmed |
An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation |
title_sort |
adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/b9e65d38422b411399499f0831f7338c |
work_keys_str_mv |
AT ahmedshaban anadaptivethresholdneuronforrecurrentspikingneuralnetworkswithnanodevicehardwareimplementation AT saisukruthbezugam anadaptivethresholdneuronforrecurrentspikingneuralnetworkswithnanodevicehardwareimplementation AT manansuri anadaptivethresholdneuronforrecurrentspikingneuralnetworkswithnanodevicehardwareimplementation AT ahmedshaban adaptivethresholdneuronforrecurrentspikingneuralnetworkswithnanodevicehardwareimplementation AT saisukruthbezugam adaptivethresholdneuronforrecurrentspikingneuralnetworkswithnanodevicehardwareimplementation AT manansuri adaptivethresholdneuronforrecurrentspikingneuralnetworkswithnanodevicehardwareimplementation |
_version_ |
1718387288671518720 |