Application of artificial neural network (ANN-MLP) for the prediction of fouling resistance in heat exchanger to MgO-water and CuO-water nanofluids
In this work, an artificial neural network (ANN) model was developed with the aim of predicting fouling resistance for heat exchanger, the network was designed and trained by means of 375 experimental data points that were selected from the literature. These data points contain six inputs, including...
Guardado en:
Autores principales: | Ahmed Benyekhlef, Brahim Mohammedi, Djamel Hassani, Salah Hanini |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b9e8fccc2c064480b41687bd2dcf7b51 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Contribution to the Modelling of Fouling Resistance in Heat Exchanger-Condenser by Direct and Inverse Artificial Neural Network
por: Ahmed Benyekhlef, et al.
Publicado: (2021) -
EFFECT OF THE MEMBRANE CHARACTERISTICS AND OPERATION MODES, IN THE FOULING OF ULTRAFILTRATION MEMBRANES BY NATURAL ORGANIC MATTER (NOM)
por: GARCÍA,CESAR, et al.
Publicado: (2012) -
In-situ manipulation of gel layer fouling into gel layer membrane formation on porous supports for water treatment
por: Syed Sibt-e-Hassan, et al.
Publicado: (2022) -
Mitigating Silica Fouling and Improving PPCP Removal by Modified NF90 Using In Situ Radical Graft Polymerization
por: Yi-Li Lin, et al.
Publicado: (2021) -
Entropy generation for MHD natural convection in enclosure with a micropolar fluid saturated porous medium with Al2O3Cu water hybrid nanofluid
por: A. Mahdy, et al.
Publicado: (2021)