A hierarchical approach to removal of unwanted variation for large-scale metabolomics data

Mass spectrometry-based metabolomics is a powerful method for profiling large clinical cohorts but batch variations can obscure biologically meaningful differences. Here, the authors develop a computational workflow that removes unwanted data variation while preserving biologically relevant informat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Taiyun Kim, Owen Tang, Stephen T. Vernon, Katharine A. Kott, Yen Chin Koay, John Park, David E. James, Stuart M. Grieve, Terence P. Speed, Pengyi Yang, Gemma A. Figtree, John F. O’Sullivan, Jean Yee Hwa Yang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/b9f05e117dcb4f2a9c9c505e343dfa63
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b9f05e117dcb4f2a9c9c505e343dfa63
record_format dspace
spelling oai:doaj.org-article:b9f05e117dcb4f2a9c9c505e343dfa632021-12-02T16:45:48ZA hierarchical approach to removal of unwanted variation for large-scale metabolomics data10.1038/s41467-021-25210-52041-1723https://doaj.org/article/b9f05e117dcb4f2a9c9c505e343dfa632021-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25210-5https://doaj.org/toc/2041-1723Mass spectrometry-based metabolomics is a powerful method for profiling large clinical cohorts but batch variations can obscure biologically meaningful differences. Here, the authors develop a computational workflow that removes unwanted data variation while preserving biologically relevant information.Taiyun KimOwen TangStephen T. VernonKatharine A. KottYen Chin KoayJohn ParkDavid E. JamesStuart M. GrieveTerence P. SpeedPengyi YangGemma A. FigtreeJohn F. O’SullivanJean Yee Hwa YangNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Taiyun Kim
Owen Tang
Stephen T. Vernon
Katharine A. Kott
Yen Chin Koay
John Park
David E. James
Stuart M. Grieve
Terence P. Speed
Pengyi Yang
Gemma A. Figtree
John F. O’Sullivan
Jean Yee Hwa Yang
A hierarchical approach to removal of unwanted variation for large-scale metabolomics data
description Mass spectrometry-based metabolomics is a powerful method for profiling large clinical cohorts but batch variations can obscure biologically meaningful differences. Here, the authors develop a computational workflow that removes unwanted data variation while preserving biologically relevant information.
format article
author Taiyun Kim
Owen Tang
Stephen T. Vernon
Katharine A. Kott
Yen Chin Koay
John Park
David E. James
Stuart M. Grieve
Terence P. Speed
Pengyi Yang
Gemma A. Figtree
John F. O’Sullivan
Jean Yee Hwa Yang
author_facet Taiyun Kim
Owen Tang
Stephen T. Vernon
Katharine A. Kott
Yen Chin Koay
John Park
David E. James
Stuart M. Grieve
Terence P. Speed
Pengyi Yang
Gemma A. Figtree
John F. O’Sullivan
Jean Yee Hwa Yang
author_sort Taiyun Kim
title A hierarchical approach to removal of unwanted variation for large-scale metabolomics data
title_short A hierarchical approach to removal of unwanted variation for large-scale metabolomics data
title_full A hierarchical approach to removal of unwanted variation for large-scale metabolomics data
title_fullStr A hierarchical approach to removal of unwanted variation for large-scale metabolomics data
title_full_unstemmed A hierarchical approach to removal of unwanted variation for large-scale metabolomics data
title_sort hierarchical approach to removal of unwanted variation for large-scale metabolomics data
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/b9f05e117dcb4f2a9c9c505e343dfa63
work_keys_str_mv AT taiyunkim ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT owentang ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT stephentvernon ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT katharineakott ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT yenchinkoay ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT johnpark ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT davidejames ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT stuartmgrieve ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT terencepspeed ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT pengyiyang ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT gemmaafigtree ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT johnfosullivan ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT jeanyeehwayang ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT taiyunkim hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT owentang hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT stephentvernon hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT katharineakott hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT yenchinkoay hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT johnpark hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT davidejames hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT stuartmgrieve hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT terencepspeed hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT pengyiyang hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT gemmaafigtree hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT johnfosullivan hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
AT jeanyeehwayang hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata
_version_ 1718383478110683136