A hierarchical approach to removal of unwanted variation for large-scale metabolomics data
Mass spectrometry-based metabolomics is a powerful method for profiling large clinical cohorts but batch variations can obscure biologically meaningful differences. Here, the authors develop a computational workflow that removes unwanted data variation while preserving biologically relevant informat...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b9f05e117dcb4f2a9c9c505e343dfa63 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b9f05e117dcb4f2a9c9c505e343dfa63 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b9f05e117dcb4f2a9c9c505e343dfa632021-12-02T16:45:48ZA hierarchical approach to removal of unwanted variation for large-scale metabolomics data10.1038/s41467-021-25210-52041-1723https://doaj.org/article/b9f05e117dcb4f2a9c9c505e343dfa632021-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25210-5https://doaj.org/toc/2041-1723Mass spectrometry-based metabolomics is a powerful method for profiling large clinical cohorts but batch variations can obscure biologically meaningful differences. Here, the authors develop a computational workflow that removes unwanted data variation while preserving biologically relevant information.Taiyun KimOwen TangStephen T. VernonKatharine A. KottYen Chin KoayJohn ParkDavid E. JamesStuart M. GrieveTerence P. SpeedPengyi YangGemma A. FigtreeJohn F. O’SullivanJean Yee Hwa YangNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Taiyun Kim Owen Tang Stephen T. Vernon Katharine A. Kott Yen Chin Koay John Park David E. James Stuart M. Grieve Terence P. Speed Pengyi Yang Gemma A. Figtree John F. O’Sullivan Jean Yee Hwa Yang A hierarchical approach to removal of unwanted variation for large-scale metabolomics data |
description |
Mass spectrometry-based metabolomics is a powerful method for profiling large clinical cohorts but batch variations can obscure biologically meaningful differences. Here, the authors develop a computational workflow that removes unwanted data variation while preserving biologically relevant information. |
format |
article |
author |
Taiyun Kim Owen Tang Stephen T. Vernon Katharine A. Kott Yen Chin Koay John Park David E. James Stuart M. Grieve Terence P. Speed Pengyi Yang Gemma A. Figtree John F. O’Sullivan Jean Yee Hwa Yang |
author_facet |
Taiyun Kim Owen Tang Stephen T. Vernon Katharine A. Kott Yen Chin Koay John Park David E. James Stuart M. Grieve Terence P. Speed Pengyi Yang Gemma A. Figtree John F. O’Sullivan Jean Yee Hwa Yang |
author_sort |
Taiyun Kim |
title |
A hierarchical approach to removal of unwanted variation for large-scale metabolomics data |
title_short |
A hierarchical approach to removal of unwanted variation for large-scale metabolomics data |
title_full |
A hierarchical approach to removal of unwanted variation for large-scale metabolomics data |
title_fullStr |
A hierarchical approach to removal of unwanted variation for large-scale metabolomics data |
title_full_unstemmed |
A hierarchical approach to removal of unwanted variation for large-scale metabolomics data |
title_sort |
hierarchical approach to removal of unwanted variation for large-scale metabolomics data |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/b9f05e117dcb4f2a9c9c505e343dfa63 |
work_keys_str_mv |
AT taiyunkim ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT owentang ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT stephentvernon ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT katharineakott ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT yenchinkoay ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT johnpark ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT davidejames ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT stuartmgrieve ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT terencepspeed ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT pengyiyang ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT gemmaafigtree ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT johnfosullivan ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT jeanyeehwayang ahierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT taiyunkim hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT owentang hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT stephentvernon hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT katharineakott hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT yenchinkoay hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT johnpark hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT davidejames hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT stuartmgrieve hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT terencepspeed hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT pengyiyang hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT gemmaafigtree hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT johnfosullivan hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata AT jeanyeehwayang hierarchicalapproachtoremovalofunwantedvariationforlargescalemetabolomicsdata |
_version_ |
1718383478110683136 |