RANDGAN: Randomized generative adversarial network for detection of COVID-19 in chest X-ray
Abstract COVID-19 spread across the globe at an immense rate and has left healthcare systems incapacitated to diagnose and test patients at the needed rate. Studies have shown promising results for detection of COVID-19 from viral bacterial pneumonia in chest X-rays. Automation of COVID-19 testing u...
Guardado en:
Autores principales: | Saman Motamed, Patrik Rogalla, Farzad Khalvati |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b9f3d84cbfb7454aadf14305a9279e8b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images
por: Saman Motamed, et al.
Publicado: (2021) -
Hyperspectral Target Detection with an Auxiliary Generative Adversarial Network
por: Yanlong Gao, et al.
Publicado: (2021) -
An Effective Convolutional Neural Network Model for the Early Detection of COVID-19 Using Chest X-ray Images
por: Muhammad Shoaib Farooq, et al.
Publicado: (2021) -
COVID-19 Detection Using Deep Learning Algorithm on Chest X-ray Images
por: Shamima Akter, et al.
Publicado: (2021) -
Ensemble Deep Learning for the Detection of COVID-19 in Unbalanced Chest X-ray Dataset
por: Khin Yadanar Win, et al.
Publicado: (2021)