Effect of X-ray free-electron laser-induced shockwaves on haemoglobin microcrystals delivered in a liquid jet

X-ray fee-electron lasers (XFELs) enable time-resolved crystallography experiments and the structure determination of proteins with little or no radiation damage. However currently it is unknown whether the designated 4.5 MHz maximum pulse rate for the European XFEL could lead to sample damage cause...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Marie Luise Grünbein, Alexander Gorel, Lutz Foucar, Sergio Carbajo, William Colocho, Sasha Gilevich, Elisabeth Hartmann, Mario Hilpert, Mark Hunter, Marco Kloos, Jason E. Koglin, Thomas J. Lane, Jim Lewandowski, Alberto Lutman, Karol Nass, Gabriela Nass Kovacs, Christopher M. Roome, John Sheppard, Robert L. Shoeman, Miriam Stricker, Tim van Driel, Sharon Vetter, R. Bruce Doak, Sébastien Boutet, Andrew Aquila, Franz Josef Decker, Thomas R. M. Barends, Claudiu Andrei Stan, Ilme Schlichting
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/b9fa088215e4467aa2714fbb4e537fb1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:X-ray fee-electron lasers (XFELs) enable time-resolved crystallography experiments and the structure determination of proteins with little or no radiation damage. However currently it is unknown whether the designated 4.5 MHz maximum pulse rate for the European XFEL could lead to sample damage caused by shock waves from preceding pulses. Here, the authors address this question by performing a X-ray pump X-ray probe experiment on haemoglobin microcrystals at the Stanford XFEL facility that mimics the 4.5 MHz data collection mode and observe structural changes and a drop in diffraction data quality of the crystals.