Quantitative 1H-NMR-metabolomics reveals extensive metabolic reprogramming and the effect of the aquaglyceroporin FPS1 in ethanol-stressed yeast cells.

A metabolomic analysis using high resolution 1H NMR spectroscopy coupled with multivariate statistical analysis was used to characterize the alterations in the endo- and exo-metabolome of S. cerevisiae BY4741 during the exponential phase of growth in minimal medium supplemented with different ethano...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Artur B Lourenço, Filipa C Roque, Miguel C Teixeira, José R Ascenso, Isabel Sá-Correia
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/ba1cd2277f6a4977b345566389c753a6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ba1cd2277f6a4977b345566389c753a6
record_format dspace
spelling oai:doaj.org-article:ba1cd2277f6a4977b345566389c753a62021-11-18T07:58:12ZQuantitative 1H-NMR-metabolomics reveals extensive metabolic reprogramming and the effect of the aquaglyceroporin FPS1 in ethanol-stressed yeast cells.1932-620310.1371/journal.pone.0055439https://doaj.org/article/ba1cd2277f6a4977b345566389c753a62013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23408980/?tool=EBIhttps://doaj.org/toc/1932-6203A metabolomic analysis using high resolution 1H NMR spectroscopy coupled with multivariate statistical analysis was used to characterize the alterations in the endo- and exo-metabolome of S. cerevisiae BY4741 during the exponential phase of growth in minimal medium supplemented with different ethanol concentrations (0, 2, 4 and 6% v/v). This study provides evidence that supports the notion that ethanol stress induces reductive stress in yeast cells, which, in turn, appears to be counteracted by the increase in the rate of NAD+ regenerating bioreactions. Metabolomics data also shows increased intra- and extra-cellular accumulation of most amino acids and TCA cycle intermediates in yeast cells growing under ethanol stress suggesting a state of overflow metabolism in turn of the pyruvate branch-point. Given its previous implication in ethanol stress resistance in yeast, this study also focused on the effect of the expression of the aquaglyceroporin encoded by FPS1 in the yeast metabolome, in the absence or presence of ethanol stress. The metabolomics data collected herein shows that the deletion of the FPS1 gene in the absence of ethanol stress partially mimics the effect of ethanol stress in the parental strain. Moreover, the results obtained suggest that the reported action of Fps1 in mediating the passive diffusion of glycerol is a key factor in the maintenance of redox balance, an important feature for ethanol stress resistance, and may interfere with the ability of the yeast cell to accumulate trehalose. Overall, the obtained results corroborate the idea that metabolomic approaches may be crucial tools to understand the function and/or the effect of membrane transporters/porins, such as Fps1, and may be an important tool for the clear-cut design of improved process conditions and more robust yeast strains aiming to optimize industrial fermentation performance.Artur B LourençoFilipa C RoqueMiguel C TeixeiraJosé R AscensoIsabel Sá-CorreiaPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 2, p e55439 (2013)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Artur B Lourenço
Filipa C Roque
Miguel C Teixeira
José R Ascenso
Isabel Sá-Correia
Quantitative 1H-NMR-metabolomics reveals extensive metabolic reprogramming and the effect of the aquaglyceroporin FPS1 in ethanol-stressed yeast cells.
description A metabolomic analysis using high resolution 1H NMR spectroscopy coupled with multivariate statistical analysis was used to characterize the alterations in the endo- and exo-metabolome of S. cerevisiae BY4741 during the exponential phase of growth in minimal medium supplemented with different ethanol concentrations (0, 2, 4 and 6% v/v). This study provides evidence that supports the notion that ethanol stress induces reductive stress in yeast cells, which, in turn, appears to be counteracted by the increase in the rate of NAD+ regenerating bioreactions. Metabolomics data also shows increased intra- and extra-cellular accumulation of most amino acids and TCA cycle intermediates in yeast cells growing under ethanol stress suggesting a state of overflow metabolism in turn of the pyruvate branch-point. Given its previous implication in ethanol stress resistance in yeast, this study also focused on the effect of the expression of the aquaglyceroporin encoded by FPS1 in the yeast metabolome, in the absence or presence of ethanol stress. The metabolomics data collected herein shows that the deletion of the FPS1 gene in the absence of ethanol stress partially mimics the effect of ethanol stress in the parental strain. Moreover, the results obtained suggest that the reported action of Fps1 in mediating the passive diffusion of glycerol is a key factor in the maintenance of redox balance, an important feature for ethanol stress resistance, and may interfere with the ability of the yeast cell to accumulate trehalose. Overall, the obtained results corroborate the idea that metabolomic approaches may be crucial tools to understand the function and/or the effect of membrane transporters/porins, such as Fps1, and may be an important tool for the clear-cut design of improved process conditions and more robust yeast strains aiming to optimize industrial fermentation performance.
format article
author Artur B Lourenço
Filipa C Roque
Miguel C Teixeira
José R Ascenso
Isabel Sá-Correia
author_facet Artur B Lourenço
Filipa C Roque
Miguel C Teixeira
José R Ascenso
Isabel Sá-Correia
author_sort Artur B Lourenço
title Quantitative 1H-NMR-metabolomics reveals extensive metabolic reprogramming and the effect of the aquaglyceroporin FPS1 in ethanol-stressed yeast cells.
title_short Quantitative 1H-NMR-metabolomics reveals extensive metabolic reprogramming and the effect of the aquaglyceroporin FPS1 in ethanol-stressed yeast cells.
title_full Quantitative 1H-NMR-metabolomics reveals extensive metabolic reprogramming and the effect of the aquaglyceroporin FPS1 in ethanol-stressed yeast cells.
title_fullStr Quantitative 1H-NMR-metabolomics reveals extensive metabolic reprogramming and the effect of the aquaglyceroporin FPS1 in ethanol-stressed yeast cells.
title_full_unstemmed Quantitative 1H-NMR-metabolomics reveals extensive metabolic reprogramming and the effect of the aquaglyceroporin FPS1 in ethanol-stressed yeast cells.
title_sort quantitative 1h-nmr-metabolomics reveals extensive metabolic reprogramming and the effect of the aquaglyceroporin fps1 in ethanol-stressed yeast cells.
publisher Public Library of Science (PLoS)
publishDate 2013
url https://doaj.org/article/ba1cd2277f6a4977b345566389c753a6
work_keys_str_mv AT arturblourenco quantitative1hnmrmetabolomicsrevealsextensivemetabolicreprogrammingandtheeffectoftheaquaglyceroporinfps1inethanolstressedyeastcells
AT filipacroque quantitative1hnmrmetabolomicsrevealsextensivemetabolicreprogrammingandtheeffectoftheaquaglyceroporinfps1inethanolstressedyeastcells
AT miguelcteixeira quantitative1hnmrmetabolomicsrevealsextensivemetabolicreprogrammingandtheeffectoftheaquaglyceroporinfps1inethanolstressedyeastcells
AT joserascenso quantitative1hnmrmetabolomicsrevealsextensivemetabolicreprogrammingandtheeffectoftheaquaglyceroporinfps1inethanolstressedyeastcells
AT isabelsacorreia quantitative1hnmrmetabolomicsrevealsextensivemetabolicreprogrammingandtheeffectoftheaquaglyceroporinfps1inethanolstressedyeastcells
_version_ 1718422692037656576