The Spatiotemporal Relationship between Landslides and Mechanisms at the Heifangtai Terrace, Northwest China

Landslide disasters have occurred frequently in the Chinese Loess Plateau (CLP) due to increased agricultural irrigation. To explore the spatiotemporal relationship between landslides and mechanisms at the Heifangtai terrace, the HFT irrigated area was selected as a typical case study to investigate...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tianfeng Gu, Jiading Wang, Henry Lin, Qiang Xue, Bin Sun, Jiaxu Kong, Jiaxing Sun, Chenxing Wang, Fanchen Zhang, Xiao Wang
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/ba2167ee6b474332830aefffab0d8558
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Landslide disasters have occurred frequently in the Chinese Loess Plateau (CLP) due to increased agricultural irrigation. To explore the spatiotemporal relationship between landslides and mechanisms at the Heifangtai terrace, the HFT irrigated area was selected as a typical case study to investigate the fundamental mechanism of the irrigation-induced landslide in the CLP. Multi-temporal remote sensing images, topographic maps, and unmanned aerial vehicle (UAV) photogrammetry data were used to investigate the evolution progress of landslides. Moreover, the evolution mechanism was discussed through topographic analysis, field monitoring, and laboratory testing. The results showed that erosion, collapse, and sliding had occurred at different scales and at different locations in the past 50 years. With an average retrogressive speed of 9.6 × 10<sup>3</sup> m<sup>2</sup> per year, the tableland decreased by 4.9 × 10<sup>5</sup> m<sup>2</sup> from 1967 to 2018, accounting for about 4.5% of its total area. Over 20 landslides and collapses were extracted in the Dangchuan section in the past four years. More than 5.48 × 10<sup>5</sup> m<sup>3</sup> of loess slipped with an average volume of 381 m<sup>3</sup> per day. The evolutionary process of the irrigation-induced landslide, which features retrogression, lateral extension, and clustering, began with local failure and ended in a series of slidings. The increase of groundwater level was a slow process, which is the reason for the lagged occurrence of the landslide. The influence of rainfall and irrigation on slope stability was greater than that of the periodic change of the groundwater level. The triggering effect of irrigation and rainfall on the landslide had a time lag due to slow loess infiltration, and the time response among irrigation, rainfall, and groundwater level was 4–6 months. Our findings provide guidance, concerning the planning and controlling of landslide disasters, which is of critical value for human and construction safety.