Regresi Nonparametrik dengan Pendekatan Deret Fourier pada Data Debit Air Sungai Citarum

River discharge is one of the factors that affect the occurrence of floods. It varies over time and hence we need to predict the flood risk. Since the plot of the data changes periodically showing a sines and cosines pattern, a nonparametric technique using Fourier series approach may be interesting...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Intaniah Ratna Nur Wisisono, Ade Irma Nurwahidah, Yudhie Andriyana
Formato: article
Lenguaje:EN
Publicado: Department of Mathematics, UIN Sunan Ampel Surabaya 2018
Materias:
Acceso en línea:https://doaj.org/article/ba2cbfd38d0043a9902cafe852484203
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:River discharge is one of the factors that affect the occurrence of floods. It varies over time and hence we need to predict the flood risk. Since the plot of the data changes periodically showing a sines and cosines pattern, a nonparametric technique using Fourier series approach may be interesting to be applied. Fourier series can be estimated using OLS (Ordinary Least Square). In a Fourier series, nonparametric regression the level of subtlety of its function is determined by their bandwidth (K). Optimal bandwidth determined using the GCV (Generalized Cross Validation) method. From the calculation results, we have optimal bandwidth which is equal to 16 with R2 is 0.7295 which means that 72.95% of the total variance in the river discharge variable can be explained by the Fourier series nonparametric regression model. Comparing to a classical time series technique, ARIMA Box Jenkins, we obtained ARIMA (1,0,0) with RMSE 83.10 while using Fourier series approach generate a smaller RMSE 50.51.