Combined In-silico and Machine Learning Approaches Toward Predicting Arrhythmic Risk in Post-infarction Patients
Background: Remodeling due to myocardial infarction (MI) significantly increases patient arrhythmic risk. Simulations using patient-specific models have shown promise in predicting personalized risk for arrhythmia. However, these are computationally- and time- intensive, hindering translation to cli...
Guardado en:
Autores principales: | Mary M. Maleckar, Lena Myklebust, Julie Uv, Per Magne Florvaag, Vilde Strøm, Charlotte Glinge, Reza Jabbari, Niels Vejlstrup, Thomas Engstrøm, Kiril Ahtarovski, Thomas Jespersen, Jacob Tfelt-Hansen, Valeriya Naumova, Hermenegild Arevalo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ba337637c73442f38f506a71d7c4dc66 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
- Cardiology research and practice
- Pakistan heart journal
-
Texas Heart Institute journal
Publicado: (1982) -
Integrated Management of Cardiovascular Risk
por: World Health Organization - Heart Asia