Combined In-silico and Machine Learning Approaches Toward Predicting Arrhythmic Risk in Post-infarction Patients

Background: Remodeling due to myocardial infarction (MI) significantly increases patient arrhythmic risk. Simulations using patient-specific models have shown promise in predicting personalized risk for arrhythmia. However, these are computationally- and time- intensive, hindering translation to cli...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mary M. Maleckar, Lena Myklebust, Julie Uv, Per Magne Florvaag, Vilde Strøm, Charlotte Glinge, Reza Jabbari, Niels Vejlstrup, Thomas Engstrøm, Kiril Ahtarovski, Thomas Jespersen, Jacob Tfelt-Hansen, Valeriya Naumova, Hermenegild Arevalo
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/ba337637c73442f38f506a71d7c4dc66
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares