Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case-study in pulmonary embolism detection
Abstract Recent advancements in deep learning have led to a resurgence of medical imaging and Electronic Medical Record (EMR) models for a variety of applications, including clinical decision support, automated workflow triage, clinical prediction and more. However, very few models have been develop...
Guardado en:
Autores principales: | Shih-Cheng Huang, Anuj Pareek, Roham Zamanian, Imon Banerjee, Matthew P. Lungren |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ba490b3f075f4d0aa5669e0e51d909ba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
por: Shih-Cheng Huang, et al.
Publicado: (2020) -
Author Correction: PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
por: Shih-Cheng Huang, et al.
Publicado: (2020) -
Pulmonary migration of liquid embolization material: An unusual cause of pulmonary embolism
por: James Yeomans, MBChB, et al.
Publicado: (2022) -
Pulmonary embolism with chronic obstructive pulmonary disease
por: Ruohan Yang, et al.
Publicado: (2021) -
Sensor-Fusion for Smartphone Location Tracking Using Hybrid Multimodal Deep Neural Networks
por: Xijia Wei, et al.
Publicado: (2021)